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1 Cosmological metric

We have considered the metrics for simple two-dimensional and three-dimensional
spaces. Also, we have computed the four-dimensional separation between two events
in spacetime through the the Minkowski metric. The spatial component of Minkowski
spacetime is Euclidean, or flat.

The Minkowski metric of Eq. (40) of GR notes applies only within the context of
SR. With no gravity present, Minkowski spacetime is flat and static. When gravity
is added, however, the permissible spacetimes are more interesting.

We now consider the rudiments of cosmological theory. The fundamental basis of
modern theory is the Friedmann−Robertson−Walker, or hot big bang model.

In the 1920s, the physicist Alexander Friedmann and then in the 1930s, the physi-
cist Howard Robertson and Arthur Walker asked:

Metric of spacetime

“What form can the metric of spacetime assume if the universe is spatially homo-
geneous and isotropic at all time, and if distances are allowed to expand or contract
as a function of time?”

The metric they derived (independently of each other) is called the Friedmann−Robertson−
Walker metric which is for spherical comoving coordinates. It can be written in the
form:

ds2 = −dt2 + a(t)2
[

dr2

1− κr2
+ r2dθ2 + r2 sin(θ)2dφ2

]
, (1)

where a(t) is the scale factor, making the metric time dependent. The scale factor,
describes how distances in a homogeneous, isotropic universe expand or contract with
time.

The time variable t in the Friedmann−Robertson−Walker metric is the cosmo-
logical proper time, called the cosmic time, and is the time measured by an observer
who sees the universe expanding uniformly around him or her.

Calculations 1!
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2 The Friedmann equation

The equation that links together a(t), κ, and ρ(t) is known as the Friedmann equation,
after Alexander Friedmann, the Russian physicist who first derived the equation in
1922. Friedmann actually started his scientific career as a meteorologist. Later,
however, he taught himself general relativity, and used Einstein’s field equation to
described how a spatially homogeneous and isotropic universe expands or contracts
as a function of time.

Friedmann published his first results, implying expanding or contracting space,
five years before Lemâitre interpreted the observed galaxy redshifts in terms of an
expanding universe, and seven years before Hubble published Hubble’s law.

Friedmann derived his eponymous equation starting from Einstein’s field equation,
using the full power of general relativity. Even without bringing relativity into play
some (thought not all) of the aspects of the Friedmann equation can be understood
with the use of purely Newtonian dynamics.

The Friedmann equation is a very important equation in Cosmology. However, if
we want to apply the Friedmann equation to the real Universe, we must have some
way of tying it to observable properties. For instance, the Friedmann equation can
be tied to the Hubble constant, H0.

Remember, in a universe whose expansion (or contraction) is described by a scale
factor a(t), there is a linear relation between recession speed v and proper distance d:

v(t) = H(t)d(t),

where:

H(t) ≡ ȧ

a
.

At the present moment,

H0 = H(t0) =

(
ȧ

a

)
t=t0

= 68± 2kms−1Mpc−1.

The time− varying function H(t) is generally known as the “Hubble parameter”,
while H0, the value of H(t) at the present day, is known as the “Hubble constant”.

With the metric given by Eq. (1), we can computing the connection coefficients
and curvature tensor to finally get the Einstein’s equations.

Calculations 2!
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The Friedmann equation become:(
ȧ

a

)2

=
8π

3
ρ− κ

a2
. (2)

Eq. (2) is known as the Friedman equation, and metrics of the form of Eq. (1)
which obeys these equations define FRW universes.

Although the Friedmann equation is indeed important, it can not, all by itself,
tell us how the scale factor a(t) evolves with time.

3 The acceleration equation

Even if we had accurate boundary conditions (precise values for ρ0 and H0, for in-
stance), it still remains a single equation in two unknowns, a(t) and ρ(r).

We need another equation involving a and ρ if we are to solve for a and ρ as
functions of time. The usual form of the acceleration equation is:

The acceleration equation:

ä

a
= −4π

3
(ρ+ 3p). (3)

The acceleration equation also includes the pressure p associated with the material
filling the universe.

Einstein was interested in finding static (ä = 0) solutions to account for the
astronomical data as they were understood at time.

A static Universe with a positive energy density is compatible with Eq. (19) if
the spatial curvature is positive κ = +1 and the density is appropriately turned.
However, Eq. (20) implies that ä will never vanish in such spacetime is the pressure p
is also nonnegative (which is true for most forms of matter, and certainly for ordinary
sources such as stars and gas).

Einstein therefore proposed a modification of his equations, to:

Rµν −
1

2
gµνR + gµνΛ = 8πGµν , (4)

where Λ is a new free parameter, the cosmological constant.

With this modification, the Friedmann equations becomes:
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(
ȧ

a

)2

=
8π

3
ρ− k

a2
+

Λ

3
. (5)

ä

a
= −4π

3
(ρ+ 3p) +

Λ

3
. (6)

These equations admit a static solution with positive spatial curvature and all
the parameters ρ, p, and Λ nonnegative. This solution is called the Einstein static
Universe.

Then, the discovery by Hubble that the Universe is expanding eliminated the
empirical need for a static world model.

By Hubble
Einstein aban-

doned the
concept.

However, the disappearance of the original motivation for introducing the cosmo-
logical constant did not change its status as a legitimate addition to the gravitational
field equations, or as a parameter to be constrained by observation. Recently, there
is reason to believe that Λ is actually nonzero, and Einstein may not have blundered
after all.

4 Conservation of energy-momentum tensor

4.1 µ = 0

We are going to consider the components of the conservation of energy-momentum
tensor:

T µν;ν = 0. (7)
Or:

T µν;ν = T µν,ν = 0 + ΓµσνT
σν + ΓνσνT

σµ (8)

Calculations 3!

The component µ = 0 becomes:

ρ̇+ 3
ȧ

a
ρ+ 3

ȧ

a
p = 0. (9)

Eq. (9) is called the fluid equation, and is one of the key equations describing the
expansion of the Universe.
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For substances of cosmological importance, the equation of state can be written
is a simple linear form:

p = wρ, (10)

where w is a dimensionless number.

Calculations 4!

The conservation of energy equation Eq.(9) becomes:

ρ̇

ρ
= −3(1 + w)

ȧ

a
. (28)

Which can be integrated:

ρ ∝ a−3(1+w). (29)

The two most popular examples of cosmological fluids are know as radiation and
matter.

4.1.1 Radiation

Radiation may be used to described either electromagnetic radiation, or massive
particles moving at relative velocities sufficiently close to the speed of light that they
become indistinguishable from photons, it obeys:

w = 1/3.

A Universe in which most of the energy density is in the form of radiation is known
as radiation−dominated.

The energy density in radiation falls of as:

ρ ∝ a−4. (11)

4.1.2 Dust

Dust is nonrelativistic matter, which obeys:

w = 0.

Examples include ordinary stars and galaxies, for which the pressure is negligible
in comparison with the energy density. Dust is also know as “matter”, and universes
whose energy density is mostly due to dust are known as matter−dominated.

The energy density in matter falls of as:
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ρ ∝ a−3. (12)

This is interpreted as the decrease in the number density of particles as the Uni-
verse expands.

Today the energy density of the Universe is dominated by matter, with:

Today:

ρmat

ρrad
∼ 106.

However, ih the past the universe was much smaller, and the energy density in
radiation would have dominated at very early times.

4.1.3 Vacuum

There is one other form of energy that is considered, the vacuum, which:

w = −1.

The energy density for the vacuum is:

ρ ∝ ρ0. (13)

So, the energy density is independent of a.

A component of the Universe with w < −1/3 is referred to generically as “dark en-
ergy”. One form of dark energy is of special interest; observational evidence indicates
that our universe may contain a cosmological constant. A cosmological constant may
be defined simply as a component of the universe that has w = −1.

4.2 µ = i

Because of isotropy, the spatial components must vanish identically.

T iν;ν = T i0;0 + T i1;1 + T i2;2 + T i3;3 = 0

For example, for i = 1.

Calculations 5!

T 1ν
;ν = 0.
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For i = 2 and i = 3 we have the same result:

T 2ν
;ν = 0.

T 3ν
;ν = 0.

5 Solutions to the Friedmann Equations

We are going to see the solutions of the Friedmann equation (19) considering k = 0:

da

a
∝ √ρ dt. (14)

Calculations 6!

To solve these differential equation we need only to specify the a(t) dependence
on the density.

For our epochs:

• Radiation dominated: ρ ∝ a−4 → a ∝ t1/2.

• Matter dominated: ρ ∝ a−3 → a ∝ t2/3.

• Vacuum: ρ ∝ ρ0 → a ∝ exp
(√

ρ0 t
)
.

From Eq. (3):

For our epochs:

• The expansion is decelerated:

Radiation: a ∝ t1/2 → ä < 0.

Matter: a ∝ t2/3 → ä < 0.

• The expansion is accelerated:

Vacuum: a ∝ exp
(√

ρ0 t
)
→ ä > 0

7



If we trace the evolution backwards in time, we necessarily reach a singularity
at a = 0. This singularity a = 0 is the Big Bang. It represents the creation of the
Universe from a singular state.

Substituting the various density relations into Eq. (2), we can compare their
evolucion. Most of these can be solved in Mathematica® through DSolve or NDSolve.

Notebook...
FRW 3.nb
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