# Intro to Measurement Systems

LA-CoNGA physics

February 3, 2021



## PRACTICE 1: PMT signal conditioning circuit

Dennis Cazar Ramírez email: dcazar@usfq.edu.ec

## Contents

| 1 | Introduction                                                            | <b>2</b>                |
|---|-------------------------------------------------------------------------|-------------------------|
| 2 | Objectives                                                              | <b>2</b>                |
| 3 | Activities   3.1 Signal amplifier   3.2 Peak detector   3.3 Simulations | <b>2</b><br>2<br>3<br>3 |
| 4 | Report                                                                  | 3                       |
| 5 | References                                                              | 4                       |

## 1 Introduction

A photomultiplier (PMT) is the most popular transducer in High Energy Particle (HEP) detection application. A PMT produce an electric pulse proportional to the intensity of light produced by the interaction of a HEP particle with matter (water for a Water Cerenkov detector for example). The basic task in detecting HEP particle is to calculate the rate, i.e. count the amount of particles arriving at the detector in a certain time. Rate is measured in Hertz and depends of several factors, see ref(1).

In this activity you have to design and simulate a peak detector circuit which be used to convert the PMT signal to an impulse suitable for a digital system which will perform the counting task.

Some of the contents needed to this work you already know, others must be studied during this activity

## 2 Objectives

- Main Objective: Design and simulate a PMT signal conditioning circuit
- Activities:
  - To design a signal amplifier with op amps
  - Learn about a peak detection techniques
  - To design an amplifier and peak detection circuit
  - To simulate the circuit and show results

## **3** Activities

#### 3.1 Signal amplifier

PMT signal is a negative pulse of few tenths of milivolts height and microseconds wide, an example is shown in the following figure:



Figure 1: Actual signal from a 9" PMT working at 1200V HV nominal level

This "original" signal must be inverted and amplified to a hundred of milivolts range to be compatible with a analog to digital converter ADC or any digital circuit used to record and post process this signal. Take into account that a typical PMT signal voltage range cpuld from 20mV to 200mV

A replica of this signal must be created and stored in a voltage source (function generator) in LTSpice, see ref(2).

Design a circuit that inverts and amplify the signal, choose the right op-amp model, factors as *slew rate* could be important, see ref (3)

#### 3.2 Peak detector

A signal diode is the key component of a peak detector, a simple rectifier circuit could act as a peak detector but it has limitations.

For this activity you have to explore active peak detector circuits based on a combination of diodes and op amps, see ref(4).

The parameters of this circuit depends of the output characteristics of the signal amplifier designed earlier.

#### 3.3 Simulations

Simulate the whole circuit and test it for different levels of signals, try to change the pulse width and height of the PMT signal to determine:

- What is the narrowest signal your circuit can detect
- What is the input range of your peak detector

#### 4 Report

Write a detailed report of this activities focusing in how you can use this circuits to build a cosmic ray particle detector, see ref(5)

## **5** References

- 1. Cosmic Ray Detectors: Principles of Operation and a Brief Overview of (Mostly) U.S. Flight Instruments
- 2. LTspice: Piecewise Linear Functions for Voltage & Current Sources
- 3. Understanding Operational Amplifier Slew Rate
- 4. Op Amp Rectifiers, Peak Detectors and Clamps
- 5. The desktop Muon Detector: A simple, physics-motivated machine- and electronics-shop project for university students, S.N. Axani, J.M. Conrad and C. Kirby, 2017