Calorimetry in High-Energy Physics

Bruno Lenzi – CEA Paris-Saclay

11/03/2021

Lectures

- I. Wingerter-Seez, C. Ochando and J-B Sauvan (special thanks), Lectures on Calorimetry, ESIPAP 2016, 2019-2021
- A. Zabi, Instrumentation for High Energy Physics, TES-HEP 2016
- R. Wigmans, Calorimetry, EDIT 2011

Books

- R. Wigmans, *Calorimetry, Energy measurement in Particle Physics,* Oxford science publication
- C. Gruppen & B. Shwartz, *Particle detectors*, Cambridge monographs on particle physics, nuclear physics and cosmology

- In HEP calorimetry is the detection of particles through total absorption in a block of matter
 - "Most particles end their journey in calorimeters"
- Calorimeters can measure both charged and neutrals
- Relative resolution improves with energy
- Complementary to tracking detectors

ATLAS

- AMS: experiment on the International Space Station
- Search presence of antimatter and dark matter
- Electromagnetic calorimeter
 - Measure high energy electrons/positrons
 - Discriminate against protons

Super-Kamiokande

- Tank of 50 ktons of ultrapure water in underground mine
 - Scattering of neutrinos with electron or nuclei of water \rightarrow Cerenkov light
 - 11k photomultipliers
- Measurement of solar neutrinos flux deficit, discovery of neutrino oscillation, ...

- Explore cosmic gamma rays
 - Interaction with the **atmosphere**
 - Emission of Cerenkov light
- Telescopes record this Cerenkov light on the ground

Electromagnetic and hadronic showers

Electromagnetic interactions with matter

- High energy particle creates a **cascade** of lower energy electrons and photons (bremsstrahlung and pair production)
 - Number of particles proportional to E₀
- When the critical energy is reached, secondary particles are slowly stopped (electrons) or absorbed (photons)

Electron energy loss

Allows nearly material-independent shower parametrisation

- Electrons loose half of their energy in about 2/3×X₀
- Photons convert in about 9/7×X₀
- High-energy particle duplication at every X_0 (e \rightarrow e γ or $\gamma \rightarrow$ ee)

Pair prod. probability

Approximation:

$$X_0 = \frac{180 \, A}{Z^2} \, g. \, cm^{-2}$$

Expressed in **cm** or **g.cm⁻²** (conversion using density)

O(1 cm) for dense materials

LA-CoNGA physics

EM shower properties

- Shower depth grows with log(E)
 - EM calorimeters can be compact (~15-30 X0, preferably high-Z materials) $E = E_0 \cdot 2^{-t}$

 $t_{max} \propto \log(E_0/E_c)$

- Lateral spread described by Molière radius
 - ~90% of the energy in a cilinder of R_M (~95% in 2 R_M)
 - Few cm for typical materials used

$$R_{M} = \frac{21 \, MeV \times X_{0}}{E_{c}} \approx \frac{7 \, A}{Z} g \, . \, cm^{-2}$$

Longitudinal profile

LA-CoNGA **physics**

iSUENA BIEN!

- Many processes, depending on particle and material
 - EM interactions
 - Hadron production, nuclear de-excitation, spallation, muon and pion decays, ...

First hadronic interaction

- Many processes, depending on particle and material
 - EM interactions
 - Hadron production, nuclear de-excitation, spallation, muon and pion decays, ...
- Described by nuclear interaction length λ_{int} , mean free path between inelastic interactions

 $\lambda \approx 35 A^{1/3} \,\mathrm{g} \cdot \mathrm{cm}^{-2}$

 λ_{int} > X0 -> hadronic showers start later and are more diffuse than EM ones

First hadronic interaction

- Hadronic calorimeters usually have 5-8 λ_{int}
- Lateral shower spread from EM core and tails from non-EM components
 - Well described by λ_{int}

Detection techniques and calorimeter types

- Energy loss produces light
 - Scintillation or Cerenkov
 - Light converted to electric current
 - Photomutipliers, photodiodes, etc

 $\beta = v_p/c$

$$\cos(\theta) = \frac{1}{n\beta}$$

- Energy loss produces light
 - Scintillation or Cerenkov
 - Light converted to electric current
 - Photomutipliers, photodiodes, etc
- Directly collect charges
 - From ionisation in gas or noble liquids
 - From electron/hole pairs in semiconductors

- Energy loss produces light
 - Scintillation or Cerenkov
 - Light converted to electric current
 - Photomutipliers, photodiodes, etc
- Directly collect charges
 - From ionisation in gas or noble liquids
 - From electron/hole pairs in semiconductors

- Measure (very small) temperature increase
 - Bolometers, not covered in this lecture
- Dedicated electronics to collect signals in each case (not covered)

- Homogeneous calorimeter
 - Single medium for shower development and signal collection
 - "All" energy deposited is collected
 - Excellent energy resolution
 - Usually (very) expensive
- Sampling calorimeter
 - Absorber (dense material) for shower development
 - Active material for signal collection
 - Only energy in active material is measured
 - Cheaper but worse energy resolution
 - All hadronic calorimeters (I know of) are of this type

Energy measurement

- Calibration from signal to energy usually from known sources
 - Light injection, radioactive decays, particle beams, ...

- Calibration from signal to energy usually from known sources
 - Light injection, radioactive decays, particle beams, ...
- A linear calorimeter has a constant response (<signal> / energy)
 - The signal is proportional to the deposited energy

- In general electromagnetic calorimeters are linear
- Hadronic calorimeters are not, the response depends on the particle

Energy resolution

Energy resolution determined by fluctuations of energy deposits and measurement process

N.B.: only a parametrisation, there can be other effects

- Stochastic term (Poisson fluctuations)
 - E \propto number of particles n: $\frac{\sigma_n}{n} = \frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}} \rightarrow \frac{\sigma_E}{E} \propto \frac{1}{\sqrt{E}}$
- Noise term: electronics or e.g. other particles
 - Independent of particle energy
- Constant term
 - Leakage, non-uniformities (construction, temperature, calibration, etc)

Energy resolution of some EM calorimeters

 Table 33.8:
 Resolution of typical electromagnetic calorimeters. E is in GeV.

Technology (Experiment)	Depth	Energy resolution	Date
NaI(Tl) (Crystal Ball) Bi ₄ Ge ₃ O ₁₂ (BGO) (L3) CsI (KTeV) CsI(Tl) (BaBar) CsI(Tl) (BELLE) PbWO ₄ (PWO) (CMS)	$ \begin{array}{c} 20X_{0} \\ 22X_{0} \\ 27X_{0} \\ 16-18X \\ 16X_{0} \\ 25X_{0} \\ 20.5 X_{0} \end{array} $		
Liquid Kr (NA48)	$20.5X_0$ 27 X_0	$3.2\%/\sqrt{E} \oplus 0.42\% \oplus 0.09/E$	1990 7 1998
Scintillator/depleted U (ZEUS) Scintillator/Pb (CDF)	$20-30X_0$ $18X_0$	$18\%/\sqrt{E}$ $13.5\%/\sqrt{E}$	1988 1988
Scintillator fiber/Pb spaghetti (KLOE)	$15X_0$	$ \begin{array}{c} 5.7\%/\sqrt{E} \oplus 0.6\% \\ O(E) & 1 \end{array} $	1995
Liquid Ar/Pb (NA31)	$27X_0$	$7.5\%/\sqrt{E_{H}} 0.5\% \overline{\oplus 0.1/E}$	1988
Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$ ^{11}ch	1993
Liquid Ar/Pb (H1)	$20 - 30X_0$	$12\%/\sqrt{E}\oplus1\%$	1998
Liquid Ar/depl. U (DØ)	$20.5X_0$	$16\%/\sqrt{E}\oplus 0.3\%\oplus 0.3/E$	1993
Liquid Ar/Pb accordion (ATLAS)	$25X_{0}$	$10\%/\sqrt{E} \oplus 0.4\% \oplus 0.3/E$	1996

Sampling

 Electromagnetic energy fraction increases with energy and varies event-by-event

 $\langle f_{em} \rangle = \langle E_{EM} / E_{tot} \rangle = 1 - (E / E_0)^{k-1}$

- Electromagnetic energy fraction increases with energy and varies event-by-event
- Large part of energy losses is invisible or late
 - Nuclear binding and recoil (~15% in Fe, ~30% in Pb), evaporation neutrons (5-10%), muons, neutrinos, ...

- Electromagnetic energy fraction increases with energy and varies event-by-event
- Large part of energy losses is invisible or late
 - Nuclear binding and recoil (~15% in Fe, ~30% in Pb), evaporation neutrons (5-10%), muons, neutrinos, ...
- Non-linearity due to different response for EM and non-EM components
 - Compensating calorimeters try to have e/h ~ 1
 - High-Z absorbers (Pb/U), ideally hydrogen in active material to boost neutron response
 - Large volume and long integration times (few 100 ns)
 - Can achieve resolutions around $20\%/\sqrt{E}$
- Typical resolutions around 50-100%/ \sqrt{E}

Beyond energy measurement

Higgs boson ($\rightarrow 2\mu 2e$) candidate at LHC

- 25 p+p collisions at the same time
 - Up to ~60 in Run-2, 200 in HL-LHC
- Another event coming in 25 ns

Higgs boson ($\rightarrow 2\mu 2e$) candidate at LHC

- 25 p+p collisions at the same time
 - Up to ~60 in Run-2, 200 in HL-LHC
- Another event coming in 25 ns

Depending on the environment, calorimeters need or provide:

- High granularity, precise position measurements
- Fast signals, trigger and timing
- Particle identification
- Radiation hardness

ATLAS ECal: particle identification and vertexing

Lateral and longitudinal segmentation

- 1st layer with 5 mm strips
 - Distinguish γ from $\pi^0 \rightarrow \gamma \gamma$

ATLAS ECal: particle identification and vertexing

Lateral and longitudinal segmentation

- 1st layer with 5 mm strips
 - Distinguish γ from $\pi^0 \rightarrow \gamma \gamma$
- 3 layers in depth
 - Shower depth: improve energy resolution
 - γ direction and vertex (H $\rightarrow \gamma \gamma$)

PbWO₄ crystal transparency affected by radiation Laser light injected into every crystal during LHC abort gap @ 100 Hz

Radiation hard detector measuring energy and time (down to 30 ps)

- Silicon sensors (6M channels) in ECAL and part of HCAL
- Scintillating tiles + SiPM readout in low-radiation region

http://laconga.redclara.net

contacto@laconga.redclara.net

Latin American alliance for Capacity buildiNG in Advanced physics

LA-CoNGA **physics**

Cofinanciado por el programa Erasmus+ de la Unión Europea

El apoyo de la Comisión Europea para la producción de esta publicación no constituye una aprobación del contenido, el cual refleja únicamente las opiniones de los autores, y la Comisión no se hace responsable del uso que pueda hacerse de la información contenida en la misma.