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“There is a physical problem common to many fields 

that is very old and has not being solved…it is the 

problem of turbulence”. 

Richard Feynman, Lectures on Physics, Vol. I. (1963). 

Laws of Nature: many natural phenomena can be understood as cause-effect relations 

Relations are expressed in mathematical terms: equations, rules, functions. 

Deterministic Dynamical Systems 

 

 

 

𝑥(𝑡): state variable of system at time t. 

(position, velocity, temperature, pressure, density, wealth, etc.) 

 

before                                   after 

f: deterministic rule: set of operations, procedures that allow to calculate the 

state of a system at time t+τ from the knowledge of its state at time t. 

Linear systems:   Superposition, 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦),  effect proportional to cause.       

                               Behavior is generally regular, periodic, smooth, predictable. 
 

Nonlinear systems: No superposition, 𝑓(𝑥 + 𝑦) ≠ 𝑓(𝑥) + 𝑓(𝑦). 

                                  Behavior can be irregular, unpredictable; abundant in Nature. 

f 

Classical nonlinear systems: turbulent fluids, 

unpredictable in time and space. Eqs. are known. 
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1.1 Brief review of Mechanics

Newton’s Laws
Newton’s Second Law of motion:

F = ma (1.1)
Cause ↔ Effect

F = m
dv

dt
= m

d2r

dt2
. (1.2)

Second order ordinary differential equation for position r(t) = (x(t), y(t), z(t)).

Solution r(t) is determined by two conditions at t = 0: r(0), v(0) =
d(r)

dt
(0).

We use notation: ẋ ≡ dx

dt
= vx; ẍ ≡

d2x

dt2
=
dvx
dt

.

Examples:

1) Proyectile motion.

At t = 0: initial position r0 = (x0, y0), initial velocity v0 = (v0x, v0y).
Force on particle of mass m in Earth’s gravitational field: F = mg.
In vector components, F = (Fx, Fy) = (0,−mg).

Newton’s Second Law, F = ma is a vector equation. For each component:

Fx = 0 = mẍ, (1.3)
Fy = −mg = mÿ, (1.4)

Solution:

x(t) = b1t+ b2, (1.5)

y(t) = −1

2
gt2 + c1t+ c2. b1, b2, c1, c2 constants (1.6)

where b2 = x0, b1 = v0x; y(0) = c2 = y0 y ẏ(0) = c1 = v0y. Then,

x(t) = x0 + v0xt, (1.7)

y(t) = y0 + v0yt−
1

2
gt2. (1.8)

Solution r(t) = (x(t), y(t)) is determined by initial conditions.
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2) Harmonic oscillator.

Initial conditions: x(0) and ẋ(0) = v(0).
Hooke’s Law force: F = −kx. Then F = ma gives:

−kx = mẍ (1.9)

can be written as
ẍ+ ω2x = 0, ω2 ≡ k/m. (1.10)

Solution:
x(t) = A sin(ωt+ φ), A, φ, const. (1.11)

where: tanφ = ω
x(0)

v(0)
and A2 = (x(0))2 +

(v(0))2

ω2
.

Solution x(t) is determined by initial conditions.

Total mechanical energy = kinetic energy + potential energy:

E =
1

2
mv2 +

1

2
kx2 (1.12)

=
1

2
mẋ2 +

1

2
kx2 =

1

2
mA2ω2 (1.13)

=
1

2
m(v(0))2 +

1

2
k(x(0))2 = constant. (1.14)

Lagrange’s equations

The motion of mechanical systems is described by Newton’s Laws. The equations of motion can be
formulated in different ways. In the Lagrangian formulation, a mechanical system is represented by a
set of s degrees of freedom or generalized coordinates, denoted as {q1, q2, . . . , qs}, and a corresponding
set of generalized velocities, {q̇1, q̇2, . . . , q̇s}. The system can be characterized by a Lagrangian functional
L(qj , q̇j , t) = T (qj , q̇j , t) − V (qj , q̇j , t). The equations of motion in the Lagrangian formulation that
describe the evolution of the system in time are

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0, j = 1, . . . , s. (1.15)

Lagrange’s equations (1.62) constitute a set of s coupled second-order differential equations for the s
generalized coordinates {qj(t)}.

Hamilton’s equations

The conjugate momentum associate to the coordinate qj is defined as

pj =
∂L

∂q̇j
= pj(qj , q̇j , t) . (1.16)

The Hamiltonian of a system is defined as the function of coordinates, conjugate momenta, and time:

H(pj , qj , t) =

s∑
j=1

pj q̇j − L(qj , q̇j , t) , (1.17)
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where the q̇i are substituted in terms of the pi, qi , and t, by inverting the relations Eq. (1.16), q̇j =
q̇j(qj , pj , t). Then, Hamilton’s equations become

q̇i =
∂H

∂pi
, (1.18)

ṗi = −∂H
∂qi

, (1.19)

Equations (1.18) and (1.19) constitute a system of 2s first-order ordinary differential equations respect
to time for the qi y pi, i = 1, 2, . . . , s, that provide another formulation of the equations of motion for a
system.

1.2 Dynamical systems and phase space
The state of many systems (physical, chemical, biological, economic, etc) can be described by a set of
n real variables corresponding to n observable quantities (position, pressure, temperature, density, etc)
that can change in time. We denote theses variables as xi(t), i = 1, . . . , n.

The state at a time t can characterized by a vector x(t) = (x1(t), x2(t), . . . , xn(t)) defined in an
Euclidean n-dimensional space U ∈ Rn with coordinates (x1, x2, . . . , xn), called phase space, where each
coordinate represents a variable of the system.

Deterministic dynamical system: Evolution from x(t1) to x(t2), t2 > t1, specified by operational
rules (differential equations, iterative functions, algorithms, instructions).

1.3 Dynamical systems with continuous time
In many systems, the evolution of state x(t) can be described by differential equations:

dx(t)

dt
= f (x(t);λ) , λ: set of parameters. (1.20)

where
f(x) = (f1(x), f2(x), . . . , fn(x)) , (1.21)

Eq. (1.20) corresponds to a system of n first-order ordinary differential equations,

ẋ1 = f1(x1, x2, . . . , xn),

...
... (1.22)

ẋn = fn(x1, x2, . . . , xn).

In general, a differential equation of order n for one variable can be expressed as a system of n differential
equations of first order for n variables.

A solution of system Eq. (1.20) for x(t) = (x1(t), x2(t), . . . , xn(t)) requires the knowledge of n initial
conditions x(0) = (x1(0), x2(0), . . . , xn(0)).

The system is linear if functions fi(x1, x2, . . . , xn), ∀i are linear. There exist general methods to find
solutions in terms of known functions (polynomial, trigonometric, exponential). Solutions are regular,
periodic, smooth, predictable.

A system is nonlinear if any function fi(x1, x2, . . . , xn) is nonlinear (powers or roots of xi, products
xixj), etc). There are no general methods to find solutions x(t); behavior of x(t) may greatly change
when parameters λ are varied; from regular, periodic, to irregular, unpredictable.
Fixed points or stationary solutions x∗(λ) = (x∗1, x

∗
2, . . . , x

∗
n;λ) of system Eq. (1.20) are given by

dx(t)

dt

∣∣∣∣
x∗

= f(x∗;λ) = 0. (1.23)

Attractor: asymptotic state (t→∞) of a dynamical system in its phase space.
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Examples

1. Hamilton’s equations for a mechanical system with s degrees of freedom constitute a 2s-dimensional
dynamical system,

q̇i =
∂H

∂pi
= fi(qj , pj), i = 1, . . . , s (1.24)

ṗi = −∂H
∂qi

= fs+i(qj , pj), i = s+ 1, . . . , 2s. (1.25)

As an example, consider a harmonic oscillator with s = 1, whose Lagrangian is

L = T − V =
1

2
mq̇2 − 1

2
kq2. (1.26)

The conjugate momentum associated to the coordinate q is

p =
∂L

∂q̇
= mq̇ ⇒ q̇ =

p

m
. (1.27)

The Hamiltonian is

H(q, p) = pq̇ − L = p q̇ − 1

2
m q̇2 +

1

2
kq2 (1.28)

=
p2

2m
+

1

2
kq2. (1.29)

The corresponding Hamilton’s equations are

q̇ =
∂H

∂p
=

p

m
= f1(q, p), (1.30)

ṗ = −∂H
∂q

= −kq = f2(q, p). (1.31)

The phase space is bidimensional (q, p). The condition

f1(q∗, p∗) =
p∗

m
= 0, (1.32)

f2(q∗, p∗) = −kq∗ = 0, (1.33)

gives the fixed point (q∗, p∗) = (0, 0). The system is linear. Solutions :

q(t) = A sin(ωt+ φ), p(t) = Amω cos(ωt+ φ). (1.34)

Sustitution of solutions q(t) y p(t) in the Hamiltonian gives

H(q, p) =
p2

2m
+

1

2
kq2 =

mω2A2

2
= cte. (1.35)

The function H(q, p) = const. represents a curve (ellipse) on the two-dimensional phase sṕace (q, p).
The trajectory described by q(t), p(t) on phase space moves on the elipse H(q, p) = cte.
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2. SIR epidemic model.
N = size of population.
S = fraction of susceptible individuals in the population.
I = fraction of infectious individuals in the population.
R = fraction of recovered individuals in the population.

The dynamics of the basic SIR model is described by the following equations

dS

dt
= −βSI,

dI

dt
= βSI − γI (1.36)

dR

dt
= γI,

where β is the rate of transmission from I to S, γ is the rate of recovery or removal. Then, 1
γ is

the average infectious period. The condition S + R + I = 1 means that the total population is
conserved (deceased-free model). Initial conditions should be: S(0) > 0, I(0) > 0, R(0) = 0.
The fixed point condition Ṡ = 0, İ = 0, Ṙ = 0, corresponds to I∗ = 0, S∗ = 0, R∗ = 1−S∗− I∗ = 1.

Threshold phenomenon
dI

dt
= (βS − γ)I

Epidemic dies out when dI(0)
dt < 0. That is, when

S(0) <
γ

β
.

The initial fraction of susceptible individuals S(0) should be greater than the critical threshold
γ/β (relative removal rate) for the propagation of the epidemic in the population. The inverse
quantity Ro ≡ β

γ is called the basic reproductive ratio, defined as the average number of secondary
cases arising from an average primary case in an entirely susceptible population. This is the most
important parameter in epidemic dynamics.
The threshold condition can be written S(0) < R−1

o . The threshold condition can also be expressed
as follows: if S(0) = 1, an epidemic can propagate only if Ro > 1.
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3. The Lotka-Volterra model describes in a simplified fashion the evolution of two interacting popula-
tions, predators and prey, in an ecological system.

Define n1(t): number of prey (eg. rabbits); n2(t): number of predators (eg. foxes) at time t. The
variation in time ṅ1 (ṅ2) depends on the gain and loss in the number of prey (predators):

ṅ1 = gain1 − loss1, (1.37)
ṅ2 = gain2 − loss2. (1.38)

Predator-prey dynamics given by two coupled equations:

ṅ1 = α1n1 − λ1n1n2, (1.39)
ṅ2 = λ2n2n1 − α2n2. (1.40)

where: α1 birth rate for prey, λ1 rate of decreasing prey eaten by predators, α2 death rate for
predators, λ2 growth rate for predators by eating prey.

If no interaction, λ1 = λ2 = 0, prey n1 would decrease exponentially and predators n2 would
increase exponentially.

Change of variables:

m1 = n1
λ2

α2
, m2 = n2

λ1

α1
, (1.41)

Then, predator-prey Eqs. can be expressed as:

ṁ1 = α1m1(1−m2) = f1(m1,m2), (1.42)
ṁ2 = −α2m2(1−m1) = f2(m1,m2). (1.43)

Fixed points : (m∗1 = 0,m∗2 = 0) and (m∗1 = 1,m∗2 = 1).

Dividing ṁ1

ṁ2
, we get:

dm1

dm2
= −

(
α1

α2

)
m1(1−m2)

m2(1−m1)
(1.44)

(1−m2)

m2
dm2 = −k (1−m1)

m1
dm1 where k ≡ α2

α1
. (1.45)

Integrating, we obtain:

lnm2 −m2 + k lnm1 − km1 = const.,
⇒ mk

1e
−km1 m2e

−m2 ≡ h(m1,m2) = const. (1.46)

The function h(m1,m2) = const represents a closed curve on the two-dimensional phase space
(m1,m2).
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Population of foxes (dashed line) and hares (continuous line) caught by the Hudson Bay Company in Canada in
a time lapse of 90 years.

1.4 Existence and Uniqueness Theorem

Given a dynamical system described by

dx(t)

dt
= f(x(t)),

defined on a subspace U ⊆ Ren, such that f(x) satisfies the Lipschitz’s property,

|f(y)− f(x)| ≤ k |y − x| , (no singularities)

for some k < ∞, where |x| ≡
[
x2

1 + · · ·+ x2
n

]1/2, and given a point x(0) ∈ U , there exists a unique
solution x(t) that satisfies this equation for t ∈ (0, τ) with initial condition x(0).

The following situations are prohibited by the Uniqueness Theorem in phase space:
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Poincaré-Bendixson Theorem
The only possible asymptotic states in the phase space of a two-dimensional dynamical system are
fixed points or limit cycles (closed trajectories).

The Poincaré-Bendixson Theorem excludes the possibility of irregular or unpredictible behavior in a
two-dimensional phase space. It is a consequence of the Existence and Uniqueness Theorem.

1.5 Liouville’s Theorem

A set of initial conditions in the phase space of a dynamical system is called an ensemble. An ensemble
of N initial conditions can be interpreted as a N replicas of a system with different initial conditions, or
as a N different realizations of the same system at an initial time.

Each point in the ensemble evolves according to the dynamical equation of the system, Eq. (1.20),
given a state x(t) at a time t. We denote by Γ(t) the volumen occupied by the set of points x(t) on
the n-dimensional phase space at time t. Since the system evolves, Γ changes in time. The uniqueness
theorem establishes that there cannot arise more than one trajectory from one initial condition. As a
consequence, Γ cannot increase in time. That is, the uniqueness theorem implies that a dynamical system
should always satisfy

dΓ

dt
≤ 0. (1.47)

Suppose that the n-dimensional volume Γ(t) is enclosed by an (n − 1)-dimensional surface S in the
phase space of the system. Trajectories in phase space behave analogously to the motion of a fluid of
“particles” or a vector field of velocities across the surface S. The change of Γ in time is given by the total
number of trajectories that cross (entering or leaving) S per unit time. The flux of a fluid across a surface
is defined as the volume of fluid that crosses the surface per unit time. The flux across a differential of
area da per unit time is equal to v · da, where v = dx

dt is the velocity of the incident particle and da is
the vector normal to the differential of area.

Figure 1.1: Flux of trajectories across a surface S that encloses a volume Γ in phase space.
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Then, the change of Γ in time is equal to the total flux per uit time across S,

dΓ

dt
=

∮
S

dx

dt
· da (total flux across S per unit time)

=

∮
S

f · da =

∫
Γ

∇ · f dΓ′ (divergence theorem in n dimensions), (1.48)

where

dΓ′ = dx1dx2 · · · dxn =

n∏
i=1

dxi, (1.49)

is the diferential of volume in the n-dimensional phase space, and

∇ · f = ∇ ·
(
dx

dt

)
=

n∑
i=1

∂ẋi
∂xi

. (1.50)

Thus, the condition Eq. (1.47) that every dynamical system satisfies is equivalent to

dΓ

dt
= 0, si ∇ · f = 0, (1.51)

dΓ

dt
< 0, si ∇ · f < 0. (1.52)

Dynamical systems that satisfy ∇ · f = 0 (dΓ
dt = 0) are called conservative, while systems such that

∇ · f < 0 (dΓ
dt < 0) are denoted as dissipative.

Figure 1.2: Evolution of an ensemble in phase space for a dissipative system (left), and for a conservative system
(right).

Trajectories in phase space of dissipative systems converge asymptotically to a geometric object that
possesses a smaller volume or lesser dimension than the phase space, it is called an attractor of the
system. This situation is typical in systems with friction and in out of equilibrium systems.

Liouville’s Theorem.
The volume represented by an ensemble of a mechanical system (that obey Hamilton’s equations) in
phase space is constant, Γ = cte, i.e.,

dΓ

dt
= 0.

Demostration:
The dynamics of the system is described by Hamilton’s equations,

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
,

where
f =

(
∂H

∂pi
,−∂H

∂qi

)
=

(
∂H

∂p1
, . . . ,

∂H

∂ps
,−∂H

∂q1
, . . . ,−∂H

∂qs

)
. (1.53)

Then,

∇ · f =
∑
i

(
∂q̇i
∂qi

+
∂ṗi
∂pi

)
(1.54)

=
∑
i

(
∂2H

∂qi∂pi
− ∂2H

∂pi∂qi

)
= 0 (1.55)

⇒ dΓ

dt
= 0. (1.56)
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Hamiltonian systems are conservative; the volume of an ensemble may chage its shape but not its size
as it moves on phase space. The evolution of an ensemble in the phase space of a Hamiltonian system is
similar to the motion of an incompressible fluid in real space.

Examples.

1. Hamilton’s equations for the harmonic oscillator are

q̇ =
p

m
= f1(q, p), (1.57)

ṗ = −kq = f2(q, p), (1.58)

This system is conservative, since

∇ · f =
∂f1

∂q
+
∂f2

∂p
= 0. (1.59)

2. Lorenz equations, famous in the discovery of the phenomenon of chaos in dynamical systems as we
shall see, are

ẋ = −ax+ ay = f1(x, y, z),

ẏ = −xz + rx− y = f2(x, y, z), (1.60)
ż = xy − bz = f3(x, y, z).

Taking the divergence,

∇ · f =
∂f1

∂x
+
∂f2

∂y
+
∂f3

∂z
= −(a+ b+ 1). (1.61)

Thus, Lorenz system is dissipative if a+ b+ 1 > 0. These are the conditions that lead to a chaotic
attractor in this system.

Figure 1.3: Lorenz attractor.

1.6 Integrable and chaotic systems
In the Lagrangian formulation, a mechanical system can be characterized by a function L(qj , q̇j , t) =
T (qj , q̇j , t)− V (qj , q̇j , t). The equations of motion that describe the evolution of the system in time are

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0, j = 1, . . . , s. (1.62)

Lagrange’s equations (1.62) constitute a set of s coupled second-order differential equations for the s
generalized coordinates {qj(t)}. The conjugate momentum associate to the coordinate qj is defined as

pj =
∂L

∂q̇j
= pj(qj , q̇j , t) . (1.63)
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A coordinate qi is cyclic, i. e., if it does not appear explicitly in the Lagrangian, so that

∂L

∂qi
= 0. (1.64)

Then, we say that the system presents a symmetry related to the motion of the cyclic coordinate;
for example, a translation symmetry in space, if qi corresponds to a spatial dimension; or a rotational
symmetry, if qi describes an angle of rotation about some axis.

If a coordinate qi is cyclic, the Lagrange’s equation for qi implies that the conjugate momentum
pi(qi, q̇i) associated to qi is a constant. The symmetry is related to a conserved quantity. On the other
hand, if the Lagrangian does not explicitly depend on time, the energy of the system is conserved. A
system may possess diverse symmetries expressed through its Lagrangian. Noether’s theorem establishes
that, in general, each symmetry in a system is associated to a conserved quantity.

The conserved quantities represent first integrals for the motion of the system; they are functions of
the coordinates and velocities (i.e. first-order time derivatives). We denote the set of conserved quantities
by Ik(qj , q̇j) = Ck, where Ck = constante, and k = 1, . . . , n. In general, these quantities can be employed
for reducing the number of Lagrange’s equations to be integrated.

A system with s degrees of freedom is integrable if it possesses, at least, s conserved
quantities; that is, if n = s.

The s conserved quantities of an integrable system can be seen as a set of s equations for the s
generalized velocities q̇j(t) which, in principle, can be reduced to a first-order differential equation respect
to time for one generalized coordinate. This, in addition, can also be integrated in principle. From the
integrated coordinate, the other coordinates may also be integrated. The solutions for all the coordinates
qj(t) can be expressed in terms of quadratures; i. e., a set of explicit integrals that generally involve
square roots of known functions. However, although the coordinates of integrable systems are susceptible
of being completely determined as explicit integrals, the exact calculation of these integrals may not be
trivial in many cases.

If a system with s degrees of freedom has less than s conserved quantities (n < s), it is called non-
integrable. A system for which there are more conserved quantities that degrees of freedom (n > s), is
denoted as superintegrable. There are few known superintegrable systems; the simplest example is a free
particle; another example is the two-body problem subject to gravitational interaction.

Examples

1. Projectile motion in gravitational field: s = 2; C1 = E, C2 = px; is integrable.

2. Harmonic oscillator: s = 1; C1 = E = cte, n = 1; is integrable.

3. Simple pendulum: s = 1; C1 = E = cte, n = 1; is integrable.

4. Double pendulum: s = 2; C1 = E = cte, n = 1; is non-integrable.

5. Spring pendulum: s = 2; C1 = E = cte, n = 1; is non-integrable.

6. Free particle is superintegrable: s = 1; n = 2: C1 = E = cte, C2 = p = cte.

Integrability may be considered as a type of symmetry present in various dynamical systems, which
allows for solutions with regular evolution (periodic or stationary) in time. However, the existence of
integrability is not a generic feature; many dynamical system are non-integrable.

A non-integrable system may exhibit a chaotic behavior for some ranges of values of their parame-
ters. The phenomenon of chaos consists in the extreme sensitivity of the evolution of the variables of a
deterministic dynamical system under infinitesimal changes in the initial conditions of those variables.
As a consequence, the evolution of the system becomes irregular and unpredictable.

Non-integrability is a necessary but not sufficient condition for the existence of chaos in a system.
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Dynamical systems that show chaotic behavior are characterized by the presence of nonlinear functions
in the equations describing the evolution of their variables. The double pendulum is an example of a
nonlinear and non-integrable system that exhibits chaotic behavior. The Lagrange’s equations for the
two generalized coordinates of this system, angles θ1 and θ2, are

θ̈1 =
g(sin θ2 cos ∆θ −M sin θ1)− (l2θ̇

2
2 + l1θ̇

2
1 cos ∆θ) sin ∆θ

l1(M − cos2 ∆θ)
(1.65)

θ̈2 =
gM(sin θ1 cos ∆θ − sin θ2)− (Ml1θ̇

2
1 + l2θ̇

2
2 cos ∆θ) sin ∆θ

l2(M − cos2 ∆θ)
, (1.66)

where ∆θ ≡ θ1 − θ2, and M ≡ 1 +m1/m2.

Figure 1.4: Left: Generalized coordinates for the double pendulum. Right: Chaotic motion in space of the
particle with mass m2.

In Chapter 3, we shall explore the chaotic behavior of the double pendulum, and other systems, in
detail.


