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Decaimientos y Dispersiones



• Bound states: Static properties such as mass, spin, parity, 
magnetic moments

• Particle decays: Allowed and forbidden decays / 
Conservation laws

• Particle scattering: Production of new massive particles / 
Study of particle interaction cross sections / High energies to 
study short distances

Experimental probes



Fermi’s Golden Rule

• Particle decays and particle scattering are transitions 
between quantum mechanical states
• In QM the transition rate between states ! and " is:

where #!" is the transition matrix element and $ is the 
density of states



Decay rates

• Lifetime of a particle (average or mean)

• Decay rate (%): probability per unit time that the particle of 
interest will decay

• If we had &(() particles, &Γ+( particles would decay in the 
next instant +(

• It follows that

•We can see that the mean lifetime:



Decay rates

• Lifetime of a particle (average or mean)

• Decay rate (%): probability per unit time that the particle of 
interest will decay

• Rate of decays 
+&
+( = −Γ&(()

• Activity

. ( = +&
+( = Γ&(()



Decay rates

• Particles can decay in several ways (decay modes, channels)

• The total decay rate is the sum of the individual decay rates 

• Branching ratios: relative frequency of a particular decay 
mode:

• Decaying states do not correspond to a single energy – they 
have a width:

∆0 1 ~ ℏ yields ∆0 ~ ℏ
1 = ℏΓ



Decaying states in QM

• For a decaying state the probability density must decay 
exponentially:

• The energies present in the wavefunction are given by the 
Fourier transform of : ( :

• So the probability of finding a state with energy E:



Decay resonances

• The probability density function for finding the particle with 
energy E is

< 0 ∝ 1
0! − 0 " + Γ"4

• E is the energy of the system 
• E0 is the characteristic rest-mass of 

the unstable particle 
• The probability density function has

a Lorentzian, peaked, line shape: 
Breit-Wigner
• Full-width at half max (FWHM) of 

the peak equal to Γ: width
• Long-lived particles: narrow width, well defined energies



Reactions and cross sections

• Cross section: “strength” of a particular interaction between 
two particles
• Effective target area presented to the incoming particle, units: 
barns (1 barn = 10#"$m") 
• Interaction rate per target particle:

Γ = GH

• G is the flux: number of particles 
passing through unit area per second 



Scattering

• Consider a beam of N particles per unit time with area A
• The beam hits a target of n nuclei per unit volume and 
thickness dx
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• The beam hits a target of I nuclei per unit volume and 
thickness +J

• Number of target particles in area .:
&% = I K . K +J

• Effective area of interaction:
H&% = HI.+J

• Incident flux: 
G = &/.



Scattering

• Consider a beam of & particles per unit time with area .
• The beam hits a target of I nuclei per unit volume and 
thickness +J

• Number of target particles in area .:
&% = I K . K +J

• Effective area of interaction:
H&% = HI.+J

• Incident flux: 
G = &/.

• Number of particles scattered per unit time

−+& = GH&% =
&
. HI.+J



Scattering

• Consider a beam of & particles per unit time with area .
• The beam hits a target of I nuclei per unit volume and 
thickness +J

• Number of target particles in area .:
&% = I K . K +J

• Effective area of interaction:
H&% = HI.+J

• Incident flux: 
G = &/.

• So the cross section is proportional to the scattering rate:

H = −+&
I&+J



Attenuation of a beam

Beam attenuation in a target of thickness L: 
• Thick target HIM ≫ 1: 

O
&!

&
−+&& = O

!

'
HI+J

& = &!P#()'
the beam attenuates exponentially

• Thin target HIM ≪ 1: 
P#()'~1 − HIM
& = &!(1 − HIM)

• Mean free path between interactions: 1/HI (also referred to 
as interaction length)



Differential cross section

• The angular distribution of the scattered 
particles is not necessarily uniform

• Number of particles scattered per unit time into +Ω is
+& = +HG&%

• The differential cross-section:
+H
+Ω =

+&
+ΩG&%

is the number of particles scattered per unit time and solid 
angle, divided by the incident flux and by the number of target 
nuclei defined by the beam area



Differential cross section

• The angular distribution of the scattered 
particles is not necessarily uniform

• Number of particles scattered per unit time into +Ω is
+& = +HG&%

• The differential cross-section:
+H
+Ω =

+&
+ΩG&%

•Most experiments do not cover 4S solid angle, and in general 
we measure +H/+Ω
• Angular distributions provide more information than the total 
cross-section about the mechanism of the interaction



Scattering in QM

• Consider a beam of particles scattering from a fixed 
potential T(U)
• The scattering rate is characterised by the interaction cross-
section H = Γ/G
•We can calculate the cross section using Fermi’s golden rule



Scattering in QM

• Consider a beam of particles scattering from a fixed 
potential T(U)
• The scattering rate is characterised by the interaction cross-
section H = Γ/G
•We can calculate the cross section using Fermi’s golden rule

• In first order perturbation theory, and using plane wave 
solutions:

we need: 
- Wave function normalisation
- Matrix element in perturbation theory
- Incident flux
- Density of states



Scattering in QM

• In first order perturbation theory, and using plane wave 
solutions:

- Wave function normalisation: Normalise wave-functions to 
one particle in a box of side V



Scattering in QM

• In first order perturbation theory, and using plane wave 
solutions:

- Wave function normalisation: Normalise wave-functions to 
one particle in a box of side V

- The matrix element contains the physics of the interaction. 
In perturbation theory (first order):



Scattering in QM

- Incident flux: consider a target of area . and a beam of 
particles with velocity W. Any incident particle within a 
volume W. will cross the target area every second

G = W.
. I = WI = W

V*



Scattering in QM

- Density of states (or phase space): the normalisation of the 
wave function implies periodic boundary conditions, which 
implies the momentum components are quantised:

each state in momentum space 
occupies a cubic volume of 



Scattering in QM

- Density of states (or phase space): the number of states +I
with magnitude of momentum in the range < → < + +< is 
the volume (in momentum space) divided by the volume of 
a single state:



Scattering in QM

- Density of states (or phase space): the number of states +I
with magnitude of momentum in the range < → < + +< is 
the volume (in momentum space) divided by the volume of 
a single state:

and the density of states:



Scattering in QM

Putting everything together:

H = Γ
G =

2S#+,"$(0)
G
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Scattering in QM

Putting everything together:

H = Γ
G =

2S#+,"$(0)
G

If W~Z~1, <~0, Born approximation:

+H
+Ω =

0"
2S " OP#,-.0⃗T(U⃗)+*U⃗

"



Yukawa potential

• Consider relativistic elastic scattering from a Yukawa 
potential 

• Our matrix element then:

where we chose the z-axis
along r:



Yukawa potential

• Consider relativistic elastic scattering from a Yukawa 
potential 

• Our matrix element then:

where we chose the z-axis
along r:



Rutherford scattering

• Consider relativistic elastic scattering from a Coulomb 
potential 

(\ = 0 and ] = ^_ in the Yukawa potential) 



Rutherford scattering

• Consider relativistic elastic scattering from a Coulomb 
potential 

(\ = 0 and ] = ^_ in the Yukawa potential) 

⃗̀ = <+ − <,
⃗̀ " = 2 <⃗ " 1 − cos c = 40" sin2c2



Rutherford scattering

• Consider relativistic elastic scattering from a Coulomb 
potential 

the differential cross section then:

+H
+Ω =

0"
2S " ℳ " = 0"

2S "
16S"^"_"
1601 sin4c2

+H
+Ω =

^"_"
40" sin4c2



Geiger-Marsden experiment

• Fixed target experiment
• Alpha particles shot at a target
• Metal foil as target (Au and Ag)



Resonant scattering

• Some particle interactions
occur via an intermediate 
resonant state which then 
decays 

V + f → g → Z + +
• The matrix element is given by second order perturbation 

theory
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resonant state which then 
decays 

V + f → g → Z + +
• The matrix element is given by second order perturbation 

theory
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Production: V + f → g Decay: g → Z + +



Resonant scattering

• Some particle interactions
occur via an intermediate 
resonant state which then 
decays 

V + f → g → Z + +
• The matrix element is given by second order perturbation 

theory

• Two stage picture:  
Production: V + f → g Decay: g → Z + +

• Near the resonance (0~0!~h2) – 2nd order effects are large



Resonant scattering

• Some particle interactions
occur via an intermediate 
resonant state which then 
decays 

V + f → g → Z + +
• The matrix element is given by second order perturbation 

theory

• Near the resonance (0~0!~\2) – 2nd order effects are large
• To account for the fact that g is unstable:



Resonant scattering

• Some particle interactions
occur via an intermediate 
resonant state which then 
decays 

V + f → g → Z + +
• The matrix element is given by second order perturbation 

theory

• The matrix element squared is then:

#+, " =
#+2 " #2, "

0 − 02 " + Γ"4



Resonant scattering

• Some particle interactions
occur via an intermediate 
resonant state which then 
decays 

V + f → g → Z + +
• So we have for the cross section:

H = S
<,"

Γ2→,Γ2→+
0 − 02 " + Γ"4

this is the Breit-Wigner cross section



Resonant scattering

• Some particle interactions
occur via an intermediate 
resonant state which then 
decays 

V + f → g → Z + +
• So we have for the cross section:

H = S
<,"

Γ2→,Γ2→+
0 − 02 " + Γ"4

this is the Breit-Wigner cross section
• <," is calculated in the centre-of-mass frame
• 0 is the centre-of-mass energy, 
• 02 is the rest mass of the resonance
• Γ2→4 are partial widths and Γ the full width of the resonance



Resonant scattering

• We should also include information about spin:

H = ]S
<,"

Γ2→,Γ2→+
0 − 02 " + Γ"4

with: ] = "5"67
("5#67)("5$67)

is the ratio of the number of spin states for the resonant state      
to the total number of spin states for the V + f system

• It is the probability that V + f collide in the correct spin state 
to form the resonance g



Resonant scattering

• We can use measurements of cross sections to infer other 
information

• Total cross section: 

H:;: =i
+
H(! → j)

H:;: =
]S
<,"

Γ2→,Γ
0 − 02 " + Γ"4



Resonant scattering

• We can use measurements of cross sections to infer other 
information

• Total cross section: 

H:;: =i
+
H(! → j)

H:;: =
]S
<,"

Γ2→,Γ
0 − 02 " + Γ"4

• Elastic cross section:
H<= = H(! → !)

H = ]S
<,"

Γ2→,Γ2→,
0 − 02 " + Γ"4



Resonant scattering

• We can use measurements of cross sections to infer other 
information

• On peak resonance (0 = 0!)

H><?@ =
]4S
<,"

Γ2→,Γ2→+
Γ"

H><?@#<= =
]4S
<,"

Γ2→,Γ2→,
Γ" = ]4S

<,"
kl(!)"

H><?@#:;: =
]4S
<,"

Γ2→,
Γ = ]4S

<,"
kl(!)



Resonances (nuclear physics)

• Production independent of 
decay

• We can see the 3 resonances 
from the 2 production 
mechanisms

• Notation in nuclear physics:
V + k → Z + m = k V, Z m



Resonances (particle physics)

• Z boson at LEP

• Total decay width

• Peak cross section



Example

• S#< scattering: Resonance at <ABCD~0.3 GeV, 0EF= 1.25 GeV. 
H><?@#:;: = 72mb, H><?@#<= = 28mb. Find ] and v! (v> =
7
" , vA = 0)


