Física de Partículas

Desintegraciones y Dispersiones

Carlos Sandoval (UNAL, Colombia)

Experimental probes

- Bound states: Static properties such as mass, spin, parity, magnetic moments
- Particle decays: Allowed and forbidden decays / Conservation laws
- Particle scattering: Production of new massive particles / Study of particle interaction cross sections / High energies to study short distances

Force	Typical Lifetime [s]	Typical cross-section [mb]
Strong	10^{-23}	10
Electromagnetic	10^{-20}	10^{-2}
Weak	10^{-8}	10^{-13}

- Particle decays and particle scattering are transitions between quantum mechanical states
- In QM the transition rate between states i and j is:

$$
\Gamma_{f i}=2 \pi\left|T_{f i}\right|^{2} \rho\left(E_{i}\right)
$$

where $T_{f i}$ is the transition matrix element and ρ is the density of states

- Lifetime of a particle (average or mean)
- Decay rate ($\boldsymbol{\Gamma}$): probability per unit time that the particle of interest will decay
- If we had $N(t)$ particles, $N \Gamma d t$ particles would decay in the next instant $d t$

$$
\mathrm{d} N=-\Gamma N \mathrm{~d} t
$$

- It follows that

$$
N(t)=N(0) e^{-\Gamma t}
$$

- We can see that the mean lifetime:

$$
\tau=\frac{1}{\Gamma}
$$

Decay rates

- Lifetime of a particle (average or mean)
- Decay rate ($\mathbf{\Gamma}$): probability per unit time that the particle of interest will decay
- Rate of decays

$$
\frac{d N}{d t}=-\Gamma N(t)
$$

- Activity

$$
A(t)=\left|\frac{d N}{d t}\right|=\Gamma N(t)
$$

- Particles can decay in several ways (decay modes, channels)
- The total decay rate is the sum of the individual decay rates

$$
\Gamma=\sum_{j} \Gamma_{j} .
$$

- Branching ratios: relative frequency of a particular decay mode:

$$
B R(j)=\frac{\Gamma_{j}}{\Gamma}
$$

- Decaying states do not correspond to a single energy - they have a width:

$$
\Delta E \tau \sim \hbar \xrightarrow{\text { yields }} \Delta E \sim \frac{\hbar}{\tau}=\hbar \Gamma
$$

Decaying states in QM

- For a decaying state the probability density must decay exponentially:

$$
\psi(t)=\psi(0) \mathrm{e}^{-i E_{0} t} \mathrm{e}^{-t / 2 \tau} \quad|\psi(t)|^{2}=|\psi(0)|^{2} \mathrm{e}^{-t / \tau}
$$

- The energies present in the wavefunction are given by the Fourier transform of $\psi(t)$:

$$
\begin{aligned}
f(\omega)= & f(E)=\int_{0}^{\infty} \psi(t) \mathrm{e}^{\mathrm{i} E t} \mathrm{~d} t=\int_{0}^{\infty} \psi(0) \mathrm{e}^{-t\left(i E_{0}+\frac{1}{2 \tau}\right)} \mathrm{e}^{\mathrm{i} E t} \mathrm{~d} t \\
& =\int_{0}^{\infty} \psi(0) \mathrm{e}^{-t\left(i\left(E_{0}-E\right)+\frac{1}{2 \tau}\right)} \mathrm{d} t=\frac{i \psi(0)}{\left(E_{0}-E\right)-\frac{i}{2 \tau}}
\end{aligned}
$$

- So the probability of finding a state with energy E:

$$
P(E)=|f(E)|^{2}=\frac{|\psi(0)|^{2}}{\left(E_{0}-E\right)^{2}+\frac{1}{4 \tau^{2}}}
$$

Decay resonances

- The probability density function for finding the particle with energy E is

$$
p(E) \propto \frac{1}{\left(E_{0}-E\right)^{2}+\frac{\Gamma^{2}}{4}}
$$

- E is the energy of the system
- E_{0} is the characteristic rest-mass of the unstable particle
- The probability density function has a Lorentzian, peaked, line shape: Breit-Wigner
- Full-width at half max (FWHM) of the peak equal to Γ : width

- Long-lived particles: narrow width, well defined energies
- Cross section: 'strength"' of a particular interaction between two particles
- Effective target area presented to the incoming particle, units: barns (1 barn $=10^{-28} \mathrm{~m}^{2}$)
- Interaction rate per target particle:

$$
\Gamma=\phi \sigma
$$

- ϕ is the flux: number of particles passing through unit area per second

- Consider a beam of N particles per unit time with area A - The beam hits a target of n nuclei per unit volume and thickness $d x$

- Consider a beam of N particles per unit time with area A
- The beam hits a target of n nuclei per unit volume and thickness $d x$
- Number of target particles in area A :

$$
N_{T}=n \cdot A \cdot d x
$$

- Effective area of interaction:

Scattering

- Consider a beam of N particles per unit time with area A
- The beam hits a target of n nuclei per unit volume and thickness $d x$
- Number of target particles in area A :

$$
N_{T}=n \cdot A \cdot d x
$$

- Effective area of interaction:

- Incident flux:

$$
\phi=N / A
$$

- Number of particles scattered per unit time

$$
-d N=\phi \sigma N_{T}=\frac{N}{A} \sigma n A d x
$$

Scattering

- Consider a beam of N particles per unit time with area A
- The beam hits a target of n nuclei per unit volume and thickness $d x$
- Number of target particles in area A :

$$
N_{T}=n \cdot A \cdot d x
$$

- Effective area of interaction:

$$
\sigma N_{T}=\sigma n A d x
$$

- Incident flux:

$$
\phi=N / A
$$

- So the cross section is proportional to the scattering rate:

$$
\sigma=\frac{-d N}{n N d x}
$$

Beam attenuation in a target of thickness L :

- Thick target $\sigma n L \gg 1$:

$$
\begin{gathered}
\int_{N_{0}}^{N}-\frac{d N}{N}=\int_{0}^{L} \sigma n d x \\
N=N_{0} e^{-\sigma n L}
\end{gathered}
$$

the beam attenuates exponentially

- Thin target $\sigma n L \ll 1$:

$$
\begin{gathered}
e^{-\sigma n L} \sim 1-\sigma n L \\
N=N_{0}(1-\sigma n L)
\end{gathered}
$$

- Mean free path between interactions: $1 / \sigma n$ (also referred to as interaction length)

Differential cross section

- The angular distribution of the scattered particles is not necessarily uniform

- Number of particles scattered per unit time into $d \Omega$ is

$$
d N=d \sigma \phi N_{T}
$$

- The differential cross-section:

$$
\frac{d \sigma}{d \Omega}=\frac{d N}{d \Omega \phi N_{T}}
$$

is the number of particles scattered per unit time and solid angle, divided by the incident flux and by the number of target nuclei defined by the beam area

Differential cross section

- The angular distribution of the scattered particles is not necessarily uniform

- Number of particles scattered per unit time into $d \Omega$ is

$$
d N=d \sigma \phi N_{T}
$$

- The differential cross-section:

$$
\frac{d \sigma}{d \Omega}=\frac{d N}{d \Omega \phi N_{T}}
$$

- Most experiments do not cover 4π solid angle, and in general we measure $d \sigma / d \Omega$
- Angular distributions provide more information than the total cross-section about the mechanism of the interaction

Scattering in QM

- Consider a beam of particles scattering from a fixed potential $V(r)$
- The scattering rate is characterised by the interaction crosssection $\sigma=\Gamma / \phi$
- We can calculate the cross section using Fermi's golden rule

Scattering in QM

- Consider a beam of particles scattering from a fixed potential $V(r)$
- The scattering rate is characterised by the interaction crosssection $\sigma=\Gamma / \phi$
- We can calculate the cross section using Fermi's golden rule
- In first order perturbation theory, and using plane wave solutions:

$$
\psi(\mathbf{x}, t)=A e^{i(\mathbf{p} \cdot \mathbf{x}-E t)}
$$

we need:

- Wave function normalisation
- Matrix element in perturbation theory
- Incident flux
- Density of states

Scattering in QM

- In first order perturbation theory, and using plane wave solutions:

$$
\psi(\mathbf{x}, t)=A e^{i(\mathbf{p} \cdot \mathbf{x}-E t)}
$$

- Wave function normalisation: Normalise wave-functions to one particle in a box of side a

$$
\begin{gathered}
\int_{0}^{a} \int_{0}^{a} \int_{0}^{a} \psi^{*} \psi \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=1 \\
A^{2}=1 / a^{3}
\end{gathered}
$$

Scattering in QM

- In first order perturbation theory, and using plane wave solutions:

$$
\psi(\mathbf{x}, t)=A e^{i(\mathbf{p} \cdot \mathbf{x}-E t)}
$$

- Wave function normalisation: Normalise wave-functions to one particle in a box of side a

$$
\begin{gathered}
\int_{0}^{a} \int_{0}^{a} \int_{0}^{a} \psi^{*} \psi \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=1 \\
A^{2}=1 / a^{3}
\end{gathered}
$$

- The matrix element contains the physics of the interaction. In perturbation theory (first order):

$$
T_{f i}=\langle f| \hat{H}|i\rangle
$$

Scattering in QM

- Incident flux: consider a target of area A and a beam of particles with velocity v. Any incident particle within a volume $v A$ will cross the target area every second

$$
\phi=\frac{v A}{A} n=v n=\frac{v}{a^{3}}
$$

Scattering in QM

- Density of states (or phase space): the normalisation of the wave function implies periodic boundary conditions, which implies the momentum components are quantised:

$$
\left(p_{x}, p_{y}, p_{z}\right)=\left(n_{x}, n_{y}, n_{z}\right) \frac{2 \pi}{a}
$$

each state in momentum space occupies a cubic volume of

$$
\mathrm{d}^{3} \mathbf{p}=\mathrm{d} p_{x} \mathrm{~d} p_{y} \mathrm{~d} p_{z}=\left(\frac{2 \pi}{a}\right)^{3}=\frac{(2 \pi)^{3}}{V}
$$

Scattering in QM

- Density of states (or phase space): the number of states $d n$ with magnitude of momentum in the range $p \rightarrow p+d p$ is the volume (in momentum space) divided by the volume of a single state:

$$
\mathrm{d} n=4 \pi \mathrm{p}^{2} \mathrm{dp} \times \frac{V}{(2 \pi)^{3}}
$$

Scattering in QM

- Density of states (or phase space): the number of states $d n$ with magnitude of momentum in the range $p \rightarrow p+d p$ is the volume (in momentum space) divided by the volume of a single state:

$$
\mathrm{d} n=4 \pi \mathrm{p}^{2} \mathrm{dp} \times \frac{V}{(2 \pi)^{3}}
$$

and the density of states:

$$
\begin{aligned}
\rho(E)=\frac{\mathrm{d} n}{\mathrm{~d} E} & =\frac{\mathrm{d} n}{\mathrm{dp}}\left|\frac{\mathrm{dp}}{\mathrm{~d} E}\right| \\
\frac{\mathrm{d} n}{\mathrm{dp}} & =\frac{4 \pi \mathrm{p}^{2}}{(2 \pi)^{3}} V .
\end{aligned}
$$

Scattering in QM

Putting everything together:

$$
\begin{aligned}
\sigma & =\frac{\Gamma}{\phi}=\frac{2 \pi T_{f i}^{2} \rho(E)}{\phi} \\
T_{f i}= & \langle f| \hat{H}|i\rangle \\
= & \int \psi_{f}^{*} \hat{H} \psi_{i} d^{3} \vec{r} \\
= & \int A e^{-i \vec{p}_{+} \cdot \vec{r}} V(\vec{r}) A e^{i \vec{p}_{i} \cdot \vec{r}} d^{3} \vec{r} \\
= & A^{2} \int e^{-i \vec{q} \cdot \vec{r}} V(\vec{r}) d^{3} \vec{r} ; \vec{q}=\vec{p}_{+}-\vec{p}_{i} \\
& \uparrow \\
& a^{3}=1 / V
\end{aligned}
$$

Scattering in QM

Putting everything together:

$$
\begin{aligned}
& \sigma=\frac{\Gamma}{\phi}=\frac{2 \pi T_{f i}^{2} \rho(E)}{\phi} \\
&\left|T_{+i}\right|^{2}=\frac{1}{V^{2}}\left|\int e^{-i \vec{q} \cdot \vec{r}} V(\vec{r}) d^{3} \vec{r}\right|^{2} \\
& \phi=\frac{V_{0}}{V} ; \rho(E)=\frac{d n}{\partial p}\left|\frac{d P}{d E}\right| \\
&=d \Omega p^{2} \frac{V}{(2 \pi)^{3}} \frac{E}{p}
\end{aligned}
$$

Scattering in QM

Putting everything together:

$$
\begin{gathered}
\sigma=\frac{\Gamma}{\phi}=\frac{2 \pi T_{f i}^{2} \rho(E)}{\phi} \\
d \sigma=2 \pi \frac{1}{\mathcal{V}^{2}}\left|\int e^{-i \vec{q} \cdot \vec{r}} \cdot V(\vec{r}) d^{3} \vec{r}\right|^{2} d \Omega p^{2} \frac{V}{(2 \pi)^{3}} \frac{E}{\not p^{\prime}} \frac{V}{V_{0}} \\
\frac{d \sigma}{d \Omega}=\frac{1}{(2 \pi)^{2} V_{0}}\left|\int e^{-i \vec{q} \cdot \vec{r}} \cdot V(\vec{r}) d^{3} \vec{r}\right|^{2} P E
\end{gathered}
$$

If $v \sim c \sim 1, p \sim E$, Born approximation:

$$
\frac{d \sigma}{d \Omega}=\frac{E^{2}}{(2 \pi)^{2}}\left|\int e^{-i \vec{q} \cdot \vec{r}} V(\vec{r}) d^{3} \vec{r}\right|^{2}
$$

Yukawa potential

- Consider relativistic elastic scattering from a Yukawa potential

$$
V(\vec{r})=\frac{g \mathrm{e}^{-m r}}{r}
$$

- Our matrix element then: $\int \mathrm{e}^{-\mathrm{i} \overrightarrow{\mathrm{i}} \boldsymbol{r} V(\vec{r}) \mathrm{d}^{3} \vec{r}=\int_{0}^{\infty} \int_{0}^{2 \pi} \int_{0}^{\pi} V(r) \mathrm{e}^{i r r \cos \theta} r^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \mathrm{~d} r}$

$$
=\int_{0}^{\infty} \int_{-1}^{+1} 2 \pi V(r) \mathrm{e}^{i r r \cos \theta} r^{2} \mathrm{~d}(\cos \theta) \mathrm{d} r
$$

where we chose the z -axis along $\mathrm{r}: \quad \vec{q} \cdot \vec{r}=-q r \cos \theta$
$=\int_{0}^{\infty} 2 \pi V(r)\left(\frac{e^{i q r}-\mathrm{e}^{-i q r}}{i q r}\right) r^{2} \mathrm{~d} r$
$=\int_{0}^{\infty} 2 \pi g \frac{\mathrm{e}^{-m r}}{r}\left(\frac{\mathrm{e}^{i q r}-\mathrm{e}^{-i q r}}{i q r}\right) r^{2} \mathrm{~d} r$
$=\int_{0}^{\infty} 2 \pi g \mathrm{e}^{-m r}\left(\frac{\mathrm{e}^{i q r}-\mathrm{e}^{-i q r}}{i q}\right) \mathrm{d} r$
$=\int_{0}^{\infty} \frac{2 \pi g}{i q}\left(\mathrm{e}^{-r(m-i q)}-\mathrm{e}^{-r(m+i q)}\right) \mathrm{d} r$
$=\frac{2 \pi g}{i q}\left(\frac{1}{m-\mathrm{i} q}-\frac{1}{m+\mathrm{i} q}\right)=\frac{2 \pi g}{i q} \frac{2 i q}{m^{2}+q^{2}}$
$=\frac{4 \pi g}{m^{2}+q^{2}}$

- Consider relativistic elastic scattering from a Yukawa potential

$$
V(\vec{r})=\frac{g \mathrm{e}^{-m r}}{r}
$$

- Our matrix element then: $\int \mathrm{e}^{-\mathrm{i} \overrightarrow{\mathrm{i}} \boldsymbol{r} V(\vec{r}) \mathrm{d}^{3} \vec{r}=\int_{0}^{\infty} \int_{0}^{2 \pi} \int_{0}^{\pi} V(r) \mathrm{e}^{i r r \cos \theta} r^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \mathrm{~d} r}$

$$
=\int_{0}^{\infty} \int_{-1}^{+1} 2 \pi V(r) \mathrm{e}^{i r r \cos \theta} r^{2} \mathrm{~d}(\cos \theta) \mathrm{d} r
$$

where we chose the z -axis along r: $\quad \vec{q} \cdot \vec{r}=-q r \cos \theta$
$=\int_{0}^{\infty} 2 \pi V(r)\left(\frac{e^{i q r}-\mathrm{e}^{-i q r}}{i q r}\right) r^{2} \mathrm{~d} r$
$=\int_{0}^{\infty} 2 \pi g \frac{\mathrm{e}^{-m r}}{r}\left(\frac{\mathrm{e}^{i q r}-\mathrm{e}^{-i q r}}{i q r}\right) r^{2} \mathrm{~d} r$
$=\int_{0}^{\infty} 2 \pi g \mathrm{e}^{-m r}\left(\frac{\mathrm{e}^{i q r}-\mathrm{e}^{-i q r}}{i q}\right) \mathrm{d} r$
$\left|M_{i f}\right|^{2}=\frac{16 \pi^{2} g^{2}}{\left(m^{2}+q^{2}\right)^{2}}$

$$
=\int_{0}^{\infty} \frac{2 \pi g}{i q}\left(\mathrm{e}^{-r(m-i q)}-\mathrm{e}^{-r(m+i q)}\right) \mathrm{d} r
$$

$$
=\frac{2 \pi g}{i q}\left(\frac{1}{m-\mathrm{i} q}-\frac{1}{m+\mathrm{i} q}\right)=\frac{2 \pi g}{i q} \frac{2 i q}{m^{2}+q^{2}}
$$

$$
=\frac{4 \pi g}{m^{2}+q^{2}}
$$

Rutherford scattering

- Consider relativistic elastic scattering from a Coulomb potential

$$
\begin{aligned}
V(\vec{r}) & =-\frac{Z \alpha}{r} \\
\left|M_{i f}\right|^{2} & =\frac{16 \pi^{2} Z^{2} \alpha^{2}}{q^{4}}
\end{aligned}
$$

($m=0$ and $g=Z \alpha$ in the Yukawa potential)

- Consider relativistic elastic scattering from a Coulomb potential

$$
\begin{aligned}
V(\vec{r}) & =-\frac{Z \alpha}{r} \\
\left|M_{i f}\right|^{2} & =\frac{16 \pi^{2} Z^{2} \alpha^{2}}{q^{4}}
\end{aligned}
$$

($m=0$ and $g=Z \alpha$ in the Yukawa potential)

$$
\begin{gathered}
\vec{q}=\overrightarrow{p_{f}}-\overrightarrow{p_{i}} \\
|\vec{q}|^{2}=2|\vec{p}|^{2}(1-\cos \theta)=4 E^{2} \sin ^{2} \frac{\theta}{2}
\end{gathered}
$$

Rutherford scattering

- Consider relativistic elastic scattering from a Coulomb potential

$$
\begin{aligned}
V(\vec{r}) & =-\frac{Z \alpha}{r} \\
\left|M_{i f}\right|^{2} & =\frac{16 \pi^{2} Z^{2} \alpha^{2}}{q^{4}}
\end{aligned}
$$

the differential cross section then:

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}=\frac{E^{2}}{(2 \pi)^{2}}|\mathcal{M}|^{2}=\frac{E^{2}}{(2 \pi)^{2}} \frac{16 \pi^{2} Z^{2} \alpha^{2}}{16 E^{4} \sin ^{4} \frac{\theta}{2}} \\
\frac{d \sigma}{d \Omega}=\frac{Z^{2} \alpha^{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}}
\end{gathered}
$$

Geiger-Marsden experiment

Fixed target experiment

- Alpha particles shot at a target
- Metal foil as target (Au and Ag)

- Some particle interactions occur via an intermediate resonant state which then decays

$$
a+b \rightarrow O \rightarrow c+d
$$

- The matrix element is given by second order perturbation theory

$$
T_{f i}=\langle f| V|i\rangle+\sum_{j \neq i} \frac{\langle f| V|j\rangle\langle j| V|i\rangle}{E_{i}-E_{j}}
$$

- Some particle interactions occur via an intermediate resonant state which then decays

$$
a+b \rightarrow O \rightarrow c+d
$$

- The matrix element is given by second order perturbation theory

$$
\begin{aligned}
& T_{f i}=\langle f| V|i\rangle+\sum_{j \neq i} \frac{\langle f| V|j\rangle\langle j| V|i\rangle}{\hbar_{i}-E_{j}} \\
& \text { ure: }
\end{aligned}
$$

Production: $a+b \rightarrow O \quad$ Decay: $O \rightarrow c+d$

- Some particle interactions occur via an intermediate resonant state which then decays

$$
a+b \rightarrow O \rightarrow c+d
$$

- The matrix element is given by second order perturbation theory

$$
T_{f i}=\langle f| V|i\rangle+\sum_{j \neq i} \frac{\langle f| V|j\rangle\langle j| V|i\rangle}{\hbar_{i}-E_{j}}
$$

Production: $a+b \rightarrow O \quad$ Decay: $O \rightarrow c+d$

- Near the resonance $\left(E \sim E_{0} \sim M_{O}\right)-2$ nd order effects are large

Resonant scattering

- Some particle interactions σ (b, occur via an intermediate resonant state which then decays

$$
a+b \rightarrow O \rightarrow c+d
$$

- The matrix element is given by second order perturbation theory

$$
T_{f i}=\langle f| V|i\rangle+\sum_{j \neq i} \frac{\langle f| V|j\rangle\langle j| V|i\rangle}{E_{i}-E_{j}}
$$

- Near the resonance $\left(E \sim E_{0} \sim m_{O}\right)$ - 2nd order effects are large
- To account for the fact that O is unstable:

$$
\begin{aligned}
\psi \propto e^{-i m t} & \rightarrow \psi \propto e^{-i m t} e^{-\Gamma t / 2} \\
m & \rightarrow m-i \Gamma / 2
\end{aligned}
$$

Resonant scattering

- Some particle interactions σ (bjoo occur via an intermediate resonant state which then decays

$$
a+b \rightarrow O \rightarrow c+d
$$

- The matrix element is given by second order perturbation theory

$$
T_{f i}=\langle f| V|i\rangle+\sum_{j \neq i} \frac{\langle f| V|j\rangle\langle j| V|i\rangle}{E_{i}-E_{j}}
$$

- The matrix element squared is then:

$$
\left|T_{f i}\right|^{2}=\frac{\left|T_{f O}\right|^{2}\left|T_{O i}\right|^{2}}{\left(E-E_{O}\right)^{2}+\frac{\Gamma^{2}}{4}}
$$

Resonant scattering

- Some particle interactions σ (b) oo occur via an intermediate resonant state which then decays

$$
a+b \rightarrow O \rightarrow c+d
$$

- So we have for the cross section:

$$
\sigma=\frac{\pi}{p_{i}^{2}} \frac{\Gamma_{O \rightarrow i} \Gamma_{O \rightarrow f}}{\left(E-E_{O}\right)^{2}+\frac{\Gamma^{2}}{4}}
$$

this is the Breit-Wigner cross section

Resonant scattering

- Some particle interactions σ (b) bou occur via an intermediate resonant state which then decays

$$
a+b \rightarrow O \rightarrow c+d
$$

- So we have for the cross section:

$$
\sigma=\frac{\pi}{p_{i}^{2}} \frac{\Gamma_{O \rightarrow i} \Gamma_{O \rightarrow f}}{\left(E-E_{O}\right)^{2}+\frac{\Gamma^{2}}{4}}
$$

this is the Breit-Wigner cross section

- p_{i}^{2} is calculated in the centre-of-mass frame
- E is the centre-of-mass energy,
- E_{O} is the rest mass of the resonance
- $\Gamma_{O \rightarrow x}$ are partial widths and Γ the full width of the resonance
- We should also include information about spin:

$$
\begin{aligned}
\sigma & =\frac{g \pi}{p_{i}^{2}} \frac{\Gamma_{O \rightarrow i} \Gamma_{O \rightarrow f}}{\left(E-E_{O}\right)^{2}+\frac{\Gamma^{2}}{4}} \\
g & =\frac{2 J_{O}+1}{\left(2 J_{a}+1\right)\left(2 J_{b}+1\right)}
\end{aligned}
$$

is the ratio of the number of spin states for the resonant state to the total number of spin states for the $a+b$ system

- It is the probability that $a+b$ collide in the correct spin state to form the resonance 0

Resonant scattering

- We can use measurements of cross sections to infer other information
- Total cross section:

$$
\begin{gathered}
\sigma_{t o t}=\sum_{f} \sigma(i \rightarrow f) \\
\sigma_{t o t}=\frac{g \pi}{p_{i}^{2}} \frac{\Gamma_{O \rightarrow i} \Gamma}{\left(E-E_{O}\right)^{2}+\frac{\Gamma^{2}}{4}}
\end{gathered}
$$

Resonant scattering

- We can use measurements of cross sections to infer other information
- Total cross section:

$$
\begin{gathered}
\sigma_{t o t}=\sum_{f} \sigma(i \rightarrow f) \\
\sigma_{t o t}=\frac{g \pi}{p_{i}^{2}} \frac{\Gamma_{O \rightarrow i} \Gamma}{\left(E-E_{O}\right)^{2}+\frac{\Gamma^{2}}{4}}
\end{gathered}
$$

- Elastic cross section:

$$
\begin{gathered}
\sigma_{e l}=\sigma(i \rightarrow i) \\
\sigma=\frac{g \pi}{p_{i}^{2}} \frac{\Gamma_{O \rightarrow i} \Gamma_{O \rightarrow i}}{\left(E-E_{O}\right)^{2}+\frac{\Gamma^{2}}{4}}
\end{gathered}
$$

Resonant scattering

- We can use measurements of cross sections to infer other information
- On peak resonance $\left(E=E_{0}\right)$

$$
\begin{gathered}
\sigma_{\text {peak }}=\frac{g 4 \pi}{p_{i}^{2}} \frac{\Gamma_{O \rightarrow i} \Gamma_{O \rightarrow f}}{\Gamma^{2}} \\
\sigma_{\text {peak-el }}=\frac{g 4 \pi}{p_{i}^{2}} \frac{\Gamma_{O \rightarrow i} \Gamma_{O \rightarrow i}}{\Gamma^{2}}=\frac{g 4 \pi}{p_{i}^{2}} B R(i)^{2} \\
\sigma_{\text {peak-tot }}=\frac{g 4 \pi}{p_{i}^{2}} \frac{\Gamma_{O \rightarrow i}}{\Gamma}=\frac{g 4 \pi}{p_{i}^{2}} B R(i)
\end{gathered}
$$

Resonances (nuclear physics)

- Production independent of decay
- We can see the 3 resonances from the 2 production mechanisms
- Notation in nuclear physics:

$$
a+B \rightarrow c+D=B(a, c) D
$$

Resonances (particle physics)

- Z boson at LEP

$$
m_{\mathrm{Z}}=91.1875 \pm 0.0021 \mathrm{GeV}
$$

- Total decay width

$$
\Gamma_{\mathrm{Z}}=2.4952 \pm 0.0023 \mathrm{GeV}
$$

- Peak cross section

Example

- $\pi^{-} p$ scattering: Resonance at $p_{\pi}^{\mathrm{lab}} \sim 0.3 \mathrm{GeV}, E_{\mathrm{cm}}=1.25 \mathrm{GeV}$.
$\sigma_{\text {peak-tot }}=72 \mathrm{mb}, \sigma_{\text {peak-el }}=28 \mathrm{mb}$. Find g and $J_{0}\left(J_{p}=\right.$
$\frac{1}{2}, J_{\pi}=0$)

- It was assumed before that the wave functions appearing on the transition matrix are normalised (l particle per unit volume):

$$
\int_{0}^{a} \int_{0}^{a} \int_{0}^{a} \psi^{*} \psi \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=1
$$

which is not Lorentz invariant

- The usual convention is to normalise to 2E particles per unit volume:

$$
\int_{V} \psi^{\prime *} \psi^{\prime} \mathrm{d}^{3} \mathbf{x}=2 E
$$

in which case:

$$
\psi^{\prime}=(2 E)^{1 / 2} \psi
$$

- If we define a general Lorentz invariant matrix element :

$$
\begin{gathered}
\mathcal{M}_{f i}=\left\langle\psi_{1}^{\prime} \psi_{2}^{\prime} \cdots\right| \hat{H}^{\prime}\left|\psi_{a}^{\prime} \psi_{b}^{\prime} \cdots\right\rangle \\
\mathcal{M}_{f i}=\left\langle\psi_{1}^{\prime} \psi_{2}^{\prime} \cdots\right| \hat{H}^{\prime}\left|\psi_{a}^{\prime} \psi_{b}^{\prime} \cdots\right\rangle=\left(2 E_{1} \cdot 2 E_{2} \cdots 2 E_{a} \cdot 2 E_{b} \cdots\right)^{1 / 2} T_{f i}
\end{gathered}
$$

- Consider a decay of the form $\quad a \rightarrow 1+2$
- The NR-QM golden rule:

$$
\begin{gathered}
\Gamma_{f i}=2 \pi \int\left|T_{f i}\right|^{2} \delta\left(E_{a}-E_{1}-E_{2}\right) \mathrm{d} n \\
\Gamma_{f i}=(2 \pi)^{4} \int\left|T_{f i}\right|^{2} \delta\left(E_{a}-E_{1}-E_{2}\right) \delta^{3}\left(\mathbf{p}_{a}-\mathbf{p}_{1}-\mathbf{p}_{2} \frac{\mathrm{~d}^{3} \mathbf{p}_{1}}{(2 \pi)^{3}} \frac{\mathrm{~d}^{3} \mathbf{p}_{2}}{(2 \pi)^{3}}\right.
\end{gathered}
$$

- Using the Lorentz invariant matrix element:

$$
\Gamma_{f i}=\frac{(2 \pi)^{4}}{2 E_{a}} \int\left|\mathcal{M}_{f i}\right|^{2} \delta\left(E_{a}-E_{1}-E_{2}\right) \delta^{3}\left(\mathbf{p}_{a}-\mathbf{p}_{1}-\mathbf{p}_{2}\right) \frac{\mathrm{d}^{3} \mathbf{p}_{1}}{(2 \pi)^{3} 2 E_{1}} \frac{\mathrm{~d}^{3} \mathbf{p}_{2}}{(2 \pi)^{3}} 2 E_{2}
$$

with $\left|\mathcal{M}_{f i}\right|^{2}=\left(2 E_{a} 2 E_{1} 2 E_{2}\right)\left|T_{f i}\right|^{2}$

- Consider a decay of the form $\quad a \rightarrow 1+2$

$$
\Gamma_{f i}=\frac{(2 \pi)^{4}}{2 E_{a}} \int\left|\mathcal{M}_{f i}\right|^{2} \delta\left(E_{a}-E_{1}-E_{2}\right) \delta^{3}\left(\mathbf{p}_{a}-\mathbf{p}_{1}-\mathbf{p}_{2}\right) \frac{\mathrm{d}^{3} \mathbf{p}_{1}}{(2 \pi)^{3} 2 E_{1}} \frac{\mathrm{~d}^{3} \mathbf{p}_{2}}{(2 \pi)^{3} 2 E_{2}}
$$

- The phase space integral $\quad d^{3} \mathbf{p} /(2 \pi)^{3}$
is replaced by

$$
\frac{\mathrm{d}^{3} \mathbf{p}}{(2 \pi)^{3} 2 E}
$$

which is the Lorentz invariant phase space factor.

- This is the Lorentz invariant Golden rule for a two body decay

Two body decay

- Example: A particle of mass m (at rest) decays into two massless particles.

Two body decay

- General two body decay

$$
\begin{gathered}
\Gamma_{f i}=\frac{1}{8 \pi^{2} m_{a}} \int\left|\mathcal{M}_{f i}\right|^{2} \delta\left(m_{a}-E_{1}-E_{2}\right) \delta^{3}\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right) \frac{\mathrm{d}^{3} \mathbf{p}_{1}}{2 E_{1}} \frac{\mathrm{~d}^{3} \mathbf{p}_{2}}{2 E_{2}} \\
\Gamma_{f i}=\frac{\mathrm{p}^{*}}{32 \pi^{2} m_{a}^{2}} \int\left|\mathcal{M}_{f i}\right|^{2} \mathrm{~d} \Omega \\
\mathrm{p}^{*}=\frac{1}{2 m_{a}} \sqrt{\left[\left(m_{a}^{2}-\left(m_{1}+m_{2}\right)^{2}\right]\left[m_{a}^{2}-\left(m_{1}-m_{2}\right)^{2}\right]\right.}
\end{gathered}
$$

Decay rates

- In general

$$
\Gamma=\left.\frac{(2 \pi)^{4}}{2 E_{a}} \int|\mathcal{M}|\right|^{2} \delta^{4}\left(p_{a}-p_{1} \ldots-p_{n}\right)\left(\frac{d^{3} \boldsymbol{p}_{1}}{(2 \pi)^{3} 2 E_{1}}\right)\left(\frac{d^{3} \boldsymbol{p}_{2}}{(2 \pi)^{3} 2 E_{2}}\right) \ldots\left(\frac{d^{3} \boldsymbol{p}_{n}}{(2 \pi)^{3} 2 E_{n}}\right)
$$

Decay rates

- In general

$$
\Gamma=\frac{(2 \pi)^{4}}{2 E_{a}} \int|\mathcal{M}|^{2} \delta^{4}\left(p_{a}-p_{1} \ldots-p_{n}\right)\left(\frac{d^{3} \boldsymbol{p}_{1}}{(2 \pi)^{3} 2 E_{1}}\right)\left(\frac{d^{3} \boldsymbol{p}_{2}}{(2 \pi)^{3} 2 E_{2}}\right) \ldots\left(\frac{d^{3} \boldsymbol{p}_{n}}{(2 \pi)^{3} 2 E_{n}}\right)
$$

physics is contained in the matrix element

- In general
$\Gamma=\frac{(2 \pi)^{4}}{2 E_{a}} \int|\mathcal{M}|^{2} \delta^{4}\left(p_{a}-p_{1} \ldots-p_{n}\right)\left(\frac{d^{3} \boldsymbol{p}_{1}}{(2 \pi)^{3} 2 E_{1}}\right)\left(\frac{d^{3} \boldsymbol{p}_{2}}{(2 \pi)^{3} 2 E_{2}}\right) \ldots\left(\frac{d^{3} \boldsymbol{p}_{n}}{(2 \pi)^{3} 2 E_{n}}\right)$
physics is contained in the matrix element

4-momentum conservation

Decay rates

- In general
$\left.\begin{array}{rl}\Gamma=\frac{(2 \pi)^{4}}{2 E_{a}} \int|\mathcal{M}|^{2} \delta^{4}\left(p_{a}-p_{1} \ldots-p_{n}\right)\left(\frac{d^{3} \boldsymbol{p}_{1}}{(2 \pi)^{3} 2 E_{1}}\right)\left(\frac{d^{3} \boldsymbol{p}_{2}}{(2 \pi)^{3} 2 E_{2}}\right)\end{array}\right)\left(\frac{d^{3} \boldsymbol{p}_{n}}{(2 \pi)^{3} 2 E_{n}}\right)$
Lorentz invariant phase space factor

Cross sections

$$
\sigma=\frac{\Gamma_{f i}}{\left(\mathrm{v}_{a}+\mathrm{v}_{b}\right)}
$$

- Going back to the Golden rule:

$$
\Gamma_{f i}=(2 \pi)^{4} \int\left|T_{f i}\right|^{2} \delta\left(E_{a}+E_{b}-E_{1}-E_{2}\right) \delta^{3}\left(\boldsymbol{p}_{a}+\boldsymbol{p}_{b}-\boldsymbol{p}_{1}-\boldsymbol{p}_{2}\right)\left(\frac{d^{3} \boldsymbol{p}_{1}}{(2 \pi)^{3}}\right)\left(\frac{d^{3} \boldsymbol{p}_{2}}{(2 \pi)^{3}}\right)
$$

Cross sections

$$
\sigma=\frac{\Gamma_{f i}}{\left(\mathrm{v}_{a}+\mathrm{v}_{b}\right)}
$$

- Going back to the Golden rule:

$$
\Gamma_{f i}=(2 \pi)^{4} \int\left|T_{f i}\right|^{2} \delta\left(E_{a}+E_{b}-E_{1}-E_{2}\right) \delta^{3}\left(\boldsymbol{p}_{a}+\boldsymbol{p}_{b}-\boldsymbol{p}_{1}-\boldsymbol{p}_{2}\right)\left(\frac{d^{3} \boldsymbol{p}_{1}}{(2 \pi)^{3}}\right)\left(\frac{d^{3} \boldsymbol{p}_{2}}{(2 \pi)^{3}}\right)
$$

- Remember these factors are not Lorentz Invariant!

Cross sections

$$
\sigma=\frac{\Gamma_{f i}}{\left(\mathrm{v}_{a}+\mathrm{v}_{b}\right)}
$$

- Going back to the Golden rule:

$$
\Gamma_{f i}=(2 \pi)^{4} \int \left\lvert\, T_{f i} \underbrace{\mid} \delta\left(E_{a}+E_{b}-E_{1}-E_{2}\right) \delta^{3}\left(\boldsymbol{p}_{a}+\boldsymbol{p}_{b}-\boldsymbol{p}_{1}-\boldsymbol{p}_{2}\right)\left(\frac{d^{3} \boldsymbol{p}_{1}}{(2 \pi)^{3}}\right)\left(\frac{d^{3} \boldsymbol{p}_{2}}{(2 \pi)^{3}}\right)\right.
$$

- Remember these factors are not Lorentz Invariant!

$$
\mathcal{M}_{f i}=\left\langle\psi_{1}^{\prime} \psi_{2}^{\prime} \cdots\right| \hat{H}^{\prime}\left|\psi_{a}^{\prime} \psi_{b}^{\prime} \cdots\right\rangle=\left(2 E_{1} \cdot 2 E_{2} \cdots 2 E_{a} \cdot 2 E_{b} \cdots\right)^{1 / 2} T_{f i}
$$

- We normalize to 2E particles per unit volume!

$$
\frac{\mathrm{d}^{3} \mathbf{p}}{(2 \pi)^{3} 2 E}
$$

Cross sections

$$
\sigma=\frac{(2 \pi)^{-2}}{4 E_{a} E_{b}\left(\mathrm{v}_{a}+\mathrm{v}_{b}\right)} \int\left|\mathcal{M}_{f i}\right|^{2} \delta\left(E_{a}+E_{b}-E_{1}-E_{2}\right) \delta^{3}\left(\mathbf{p}_{a}+\mathbf{p}_{b}-\mathbf{p}_{1}-\mathbf{p}_{2}\right) \frac{\mathrm{d}^{3} \mathbf{p}_{1}}{2 E_{1}} \frac{\mathrm{~d}^{3} \mathbf{p}_{2}}{2 E_{2}}
$$

- Which is now Lorentz Invariant
- Lorentz invariant flux factor: $4 E_{a} E_{b}\left(\mathrm{v}_{a}+\mathrm{v}_{b}\right)$

$$
F=4\left[\left(p_{a} \cdot p_{b}\right)^{2}-m_{a}^{2} m_{b}^{2}\right]^{\frac{1}{2}}
$$

Cross sections

$$
\sigma=\frac{(2 \pi)^{-2}}{4 E_{a} E_{b}\left(\mathrm{v}_{a}+\mathrm{v}_{b}\right)} \int\left|\mathcal{M}_{f i}\right|^{2} \delta\left(E_{a}+E_{b}-E_{1}-E_{2}\right) \delta^{3}\left(\mathbf{p}_{a}+\mathbf{p}_{b}-\mathbf{p}_{1}-\mathbf{p}_{2}\right) \frac{\mathrm{d}^{3} \mathbf{p}_{1}}{2 E_{1}} \frac{\mathrm{~d}^{3} \mathbf{p}_{2}}{2 E_{2}}
$$

- Which is now Lorentz Invariant
- Lorentz invariant flux factor: $4 E_{a} E_{b}\left(\mathrm{v}_{a}+\mathrm{v}_{b}\right)$

$$
F=4\left[\left(p_{a} \cdot p_{b}\right)^{2}-m_{a}^{2} m_{b}^{2}\right]^{\frac{1}{2}}
$$

- Two particular cases
- centre-of-mass frame: $F=4|p| \sqrt{s}$
- fixed-target (particle b at rest): $F=4 m_{b}\left|p_{a}\right|$

$$
\sigma=\frac{(2 \pi)^{-2}}{4 E_{a} E_{b}\left(\mathrm{v}_{a}+\mathrm{v}_{b}\right)} \int\left|\mathcal{M}_{f i}\right|^{2} \delta\left(E_{a}+E_{b}-E_{1}-E_{2}\right) \delta^{3}\left(\mathbf{p}_{a}+\mathbf{p}_{b}-\mathbf{p}_{1}-\mathbf{p}_{2}\right) \frac{\mathrm{d}^{3} \mathbf{p}_{1}}{2 E_{1}} \frac{\mathrm{~d}^{3} \mathbf{p}_{2}}{2 E_{2}}
$$

- With: $\mathbf{p}_{a}=-\mathbf{p}_{b}=\mathbf{p}_{i}^{*}$

$$
\sqrt{s}=\left(E_{a}+E_{b}\right)
$$

$$
\sigma=\frac{1}{(2 \pi)^{2}} \frac{1}{4 \mathrm{p}_{i}^{*} \sqrt{s}} \int\left|\mathcal{M}_{f i}\right|^{2} \delta\left(\sqrt{s}-E_{1}-E_{2}\right) \delta^{3}\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right) \frac{\mathrm{d}^{3} \mathbf{p}_{1}}{2 E_{1}} \frac{\mathrm{~d}^{3} \mathbf{p}_{2}}{2 E_{2}}
$$

$$
\sigma=\frac{1}{64 \pi^{2} s} \frac{\mathrm{p}_{f}^{*}}{\mathrm{p}_{i}^{*}} \int\left|\mathcal{M}_{f i}\right|^{2} \mathrm{~d} \Omega^{*}
$$

where $\mathbf{p}_{1}=-\mathbf{p}_{2}=\mathbf{p}_{f}^{*}$

- In some cases not only the total cross section is of interest

- here the angular distribution of the scattered electron provides crucial information
- In some cases not only the total cross section is of interest

- here the angular distribution of the scattered electron provides crucial information
- Differential cross section:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\text { number of particles scattered into } \mathrm{d} \Omega \text { per unit time per target particle }}{\text { incident flux }}
$$

- Differential cross section:

$$
\sigma=\int \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \mathrm{~d} \Omega
$$

in general is not restricted to angular distributions

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} E} \quad \frac{\mathrm{~d}^{2} \sigma}{\mathrm{~d} E \mathrm{~d} \Omega}
$$

- Looking back at the two body scattering:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega^{*}}=\frac{1}{64 \pi^{2} s} \frac{\mathrm{p}_{f}^{*}}{\mathrm{p}_{i}^{*}}\left|\mathcal{M}_{f i}\right|^{2}
$$

- Differential cross section:

$$
\sigma=\int \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \mathrm{~d} \Omega
$$

in general is not restricted to angular distributions

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} E} \quad \frac{\mathrm{~d}^{2} \sigma}{\mathrm{~d} E \mathrm{~d} \Omega}
$$

- Looking back at the two body scattering:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega^{*}}=\frac{1}{64 \pi^{2} s} \frac{\mathrm{p}_{f}^{*}}{\mathrm{p}_{i}^{*}}\left|\mathcal{M}_{f i}\right|^{2}
$$

this works in the case where the C.M frame is the same as the lab. Frame (i.e. the pp collisions at the LHC)

Differential cross section

- We need a Lorentz invariant form so it can be applied to any reference frame
- We introduce the Mandelstam variables:

$$
\begin{aligned}
s & =\left(p_{1}+p_{2}\right)^{2}=\left(p_{3}+p_{4}\right)^{2} \\
t & =\left(p_{1}-p_{3}\right)^{2}=\left(p_{2}-p_{4}\right)^{2} \\
u & =\left(p_{1}-p_{4}\right)^{2}=\left(p_{2}-p_{3}\right)^{2}
\end{aligned}
$$

since they are four-vector scalar products, they are Lorentz invariant

- Also:

$$
s+u+t=m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m_{4}^{2}
$$

- If we take an ep elastic collision as example:

Differential cross section

- Here energies and momenta are fixed by energy and momentum conservation

- Going back to the differential cross section

$$
\mathrm{d} \sigma=\frac{1}{64 \pi^{2} s} \frac{\mathrm{p}_{f}^{*}}{\mathrm{p}_{i}^{*}}\left|\mathcal{M}_{f i}\right|^{2} \mathrm{~d} \Omega^{*}
$$

with

$$
\mathrm{d} \Omega^{*} \equiv \mathrm{~d}\left(\cos \theta^{*}\right) \mathrm{d} \phi^{*}=\frac{\mathrm{d} t \mathrm{~d} \phi^{*}}{2 \mathrm{p}_{1}^{*} \mathrm{p}_{3}^{*}}
$$

we get:

$$
\mathrm{d} \sigma=\frac{1}{128 \pi^{2} s \mathrm{p}_{i}^{* 2}}\left|\mathcal{M}_{f i}\right|^{\mathrm{d}} \mathrm{~d} \mathrm{*}^{*} \mathrm{~d} t
$$

and assuming the amplitude is independent of the azimuthal angle

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} t}=\left.\frac{1}{64 \pi s \mathrm{p}_{i}^{* 2}}\left|\mathcal{M}_{f i}\right|\right|^{2}
$$

- Going back to the differential cross section

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} t}=\frac{1}{64 \pi s \mathrm{p}_{i}^{* 2}}\left|\mathcal{M}_{f i}\right|^{2}
$$

this is Lorentz invariant.

- Homework: prove that

$$
\mathrm{p}_{i}^{* 2}=\frac{1}{4 s}\left[s-\left(m_{1}+m_{2}\right)^{2}\right]\left[s-\left(m_{1}-m_{2}\right)^{2}\right]
$$

Differential cross section

- Let's look at the lab frame now

In the limit where $E_{e} \approx p_{e}$

$$
\begin{aligned}
& p_{1} \approx\left(E_{1}, 0,0, E_{1}\right), \\
& p_{2}=\left(m_{\mathrm{p}}, 0,0,0\right), \\
& p_{3} \approx\left(E_{3}, 0, E_{3} \sin \theta, E_{3} \cos \theta\right), \\
& p_{4}=\left(E_{4}, \mathbf{p}_{4}\right) .
\end{aligned}
$$

- Let's look at the lab frame now

Since $\quad m_{\mathrm{e}} \ll m_{\mathrm{p}}$

$$
\mathrm{p}_{i}^{* 2} \approx \frac{\left(s-m_{\mathrm{p}}^{2}\right)^{2}}{4 s}
$$

and

$$
\begin{aligned}
s=\left(p_{1}+p_{2}\right)^{2} & =p_{1}^{2}+p_{2}^{2}+2 p_{1} \cdot p_{2} \approx m_{\mathrm{p}}^{2}+2 p_{1} \cdot p_{2} \\
& =m_{\mathrm{p}}^{2}+2 E_{1} m_{\mathrm{p}},
\end{aligned}
$$

Differential cross section

- Let's look at the lab frame now

We have then $\mathrm{p}_{i}^{* 2}=\frac{E_{1}^{2} m_{\mathrm{p}}^{2}}{s}$

Differential cross section

- Let's look at the lab frame now

We want to find the differential cross section in the lab frame:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\mathrm{d} \sigma}{\mathrm{~d} t}\left|\frac{\mathrm{~d} t}{\mathrm{~d} \Omega}\right|=\frac{1}{2 \pi} \frac{\mathrm{~d} t}{\mathrm{~d}(\cos \theta)} \frac{\mathrm{d} \sigma}{\mathrm{~d} t}
$$

- We want to find the differential cross section in the lab frame:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\mathrm{d} \sigma}{\mathrm{~d} t}\left|\frac{\mathrm{~d} t}{\mathrm{~d} \Omega}\right|=\frac{1}{2 \pi} \frac{\mathrm{~d} t}{\mathrm{~d}(\cos \theta)} \frac{\mathrm{d} \sigma}{\mathrm{~d} t}
$$

$$
\begin{aligned}
& t=\left(p_{1}-p_{3}\right)^{2} \approx-2 E_{1} E_{3}(1-\cos \theta) \\
& t=\left(p_{2}-p_{4}\right)^{2}=2 m_{\mathrm{p}}^{2}-2 p_{2} \cdot p_{4}=2 m_{\mathrm{p}}^{2}-2 m_{\mathrm{p}} E_{4}=-2 m_{\mathrm{p}}\left(E_{1}-E_{3}\right)
\end{aligned}
$$

$$
E_{3}=\frac{E_{1} m_{\mathrm{p}}}{m_{\mathrm{p}}+E_{1}-E_{1} \cos \theta}
$$

$$
\begin{aligned}
& p_{1} \approx\left(E_{1}, 0,0, E_{1}\right), \\
& p_{2}=\left(m_{\mathrm{p}}, 0,0,0\right), \\
& p_{3} \approx\left(E_{3}, 0, E_{3} \sin \theta, E_{3} \cos \theta\right), \\
& p_{4}=\left(E_{4}, \mathbf{p}_{4}\right) .
\end{aligned}
$$

- We want to find the differential cross section in the lab frame:

$$
\begin{gathered}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\mathrm{d} \sigma}{\mathrm{~d} t}\left|\frac{\mathrm{~d} t}{\mathrm{~d} \Omega}\right|=\frac{1}{2 \pi} \frac{\mathrm{~d} t}{\mathrm{~d}(\cos \theta)} \frac{\mathrm{d} \sigma}{\mathrm{~d} t} \\
t=\left(p_{1}-p_{3}\right)^{2} \approx-2 E_{1} E_{3}(1-\cos \theta) \\
t=\left(p_{2}-p_{4}\right)^{2}=2 m_{\mathrm{p}}^{2}-2 p_{2} \cdot p_{4}=2 m_{\mathrm{p}}^{2}-2 m_{\mathrm{p}} E_{4}=-2 m_{\mathrm{p}}\left(E_{1}-E_{3}\right) \\
E_{3}=\frac{E_{1} m_{\mathrm{p}}}{m_{\mathrm{p}}+E_{1}-E_{1} \cos \theta} \quad \begin{array}{l}
p_{1} \approx\left(E_{1}, 0,0, E_{1}\right), \\
p_{2}=\left(m_{\mathrm{p}}, 0,0,0\right), \\
p_{3} \approx\left(E_{3}, 0, E_{3} \sin \theta, E_{3} \cos \theta\right), \\
p_{4}=\left(E_{4}, \mathbf{p}_{4}\right) .
\end{array}
\end{gathered}
$$

- We want to find the differential cross section in the lab frame:

$$
\begin{gathered}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\mathrm{d} \sigma}{\mathrm{~d} t}\left|\frac{\mathrm{~d} t}{\mathrm{~d} \Omega}\right|=\frac{1}{2 \pi} \frac{\mathrm{~d} t}{\mathrm{~d}(\cos \theta)} \frac{\mathrm{d} \sigma}{\mathrm{~d} t} \\
t=\left(p_{1}-p_{3}\right)^{2} \approx-2 E_{1} E_{3}(1-\cos \theta) \\
t=\left(p_{2}-p_{4}\right)^{2}=2 m_{\mathrm{p}}^{2}-2 p_{2} \cdot p_{4}=2 m_{\mathrm{p}}^{2}-2 m_{\mathrm{p}} E_{4}=-2 m_{\mathrm{p}}\left(E_{1}-E_{3}\right) \\
\frac{\mathrm{d} t}{\mathrm{~d}(\cos \theta)}=2 E_{3}^{2} \quad \\
\\
\begin{array}{l}
p_{1} \approx\left(E_{1}, 0,0, E_{1}\right), \\
p_{2}=\left(m_{\mathrm{p}}, 0,0,0\right), \\
p_{3} \approx\left(E_{3}, 0, E_{3} \sin \theta, E_{3} \cos \theta\right) \\
p_{4}=\left(E_{4}, \mathbf{p}_{4}\right) .
\end{array} \\
\hline
\end{gathered}
$$

- We want to find the differential cross section in the lab frame:

$$
\begin{gathered}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\mathrm{d} \sigma}{\mathrm{~d} t}\left|\frac{\mathrm{~d} t}{\mathrm{~d} \Omega}\right|=\frac{1}{2 \pi} \frac{\mathrm{~d} t}{\mathrm{~d}(\cos \theta)} \frac{\mathrm{d} \sigma}{\mathrm{~d} t} \\
\frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{2 \pi} 2 E_{3}^{2} \frac{\mathrm{~d} \sigma}{\mathrm{~d} t}=\frac{E_{3}^{2}}{64 \pi^{2} s \mathrm{p}_{i}^{* 2}}\left|\mathcal{M}_{f i}\right|^{2} \\
\frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{64 \pi^{2}}\left(\frac{E_{3}}{m_{\mathrm{p}} E_{1}}\right)^{2}\left|\mathcal{M}_{f i}\right|^{2} \\
\frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{64 \pi^{2}}\left(\frac{1}{m_{\mathrm{p}}+E_{1}-E_{1} \cos \theta}\right)^{2}\left|\mathcal{M}_{f i}\right|^{2}
\end{gathered}
$$

in terms of initial energy and scattering angle

- Decay rate a-> 1+2:

$$
\begin{gathered}
\Gamma_{f i}=\frac{\mathrm{p}^{*}}{32 \pi^{2} m_{a}^{2}} \int\left|\mathcal{M}_{f i}\right|^{2} \mathrm{~d} \Omega \\
\mathrm{p}^{*}=\frac{1}{2 m_{a}} \sqrt{\left[\left(m_{a}^{2}-\left(m_{1}+m_{2}\right)^{2}\right]\left[m_{a}^{2}-\left(m_{1}-m_{2}\right)^{2}\right]\right.}
\end{gathered}
$$

- Differential cross section for $\mathrm{a}+\mathrm{b}->\mathrm{c}+\mathrm{d}$ in the C.M. frame:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega^{*}}=\frac{1}{64 \pi^{2} s} \frac{\mathrm{p}_{f}^{*}}{\mathrm{p}_{i}^{*}}\left|\mathcal{M}_{f i}\right|^{2}
$$

- For ep elastic scattering in the Lab. Frame:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{64 \pi^{2}}\left(\frac{E_{3}}{m_{\mathrm{p}} E_{1}}\right)^{2}\left|\mathcal{M}_{f i}\right|^{2}
$$

