Digital Signal Processing DSP

by Dennis Cazar Ramírez

February 18, 2023

by Dennis Cazar Ramírez

Digital Signal Processing DSP -

Contents

Analog to Digital Conversion
Quantization error

2 Digital Signal Processing

- Basic Definitions
- Signal to Noise Ratio
- Histograms
- Binning
- 3 Linear Systems
 - Definitions
 - Superposition

- Digitization process implies two stages:
 - **Sampling:** A Sample and Hold (S/H) circuit retains an instantaneous value of the signal to allow ADC to have a stable value during conversion
 - **Quantization:** The ADC converts the voltage to the nearest integer number depending of the number of bits of the ADC

• We can see the effects of quantization, any one sample in the digitized signal can have a maximum error of $\pm 1/2$ LSB (Least Significant Bit)

Analog to Digital Conversion Quantization Error

• Subtracting the sampled analog signal to the digitized signal we obtain

• Quantization Error: is a random noise added to the signal, it has

- $\bullet\,$ It is uniformly distributed between $\pm 1/2$ LSB
- Mean value of zero
- Standard deviation of $1/\sqrt{12}$ LSB

- Passing an analog signal to an 8 bit ADC adds an *rms noise* of: 0.29/256 or about 1/900 of the full scale value
- Passing an analog signal to an 12 bit ADC adds an *rms noise* of: 0.29/4096 or about 1/14000 of the full scale value
- Since quantization error is a random noise, the number of bits determines the precision of the data
- For the example you can make the statement : "We increased the precision of the measurement from 8 to 12 bits"
- This model is extremely powerful, because the random noise generated by quantization error will simply add to the noise present in the original signal

Digital Signal Processing Applications

- Digital Signal Processing is the mathematics, the algorithms and techniques used to manipulate signals after they have been converted into digital form.
- DSP applications are everywhere:
 - Medical: Diagnostic Imaging (CT, MRI, Ultrasound), ECG analysis
 - **Space:** Space photograph enhancement, Intelligent sensor analysis y remote probes
 - Scientific: Spectral analysis, simulation and modelling, Data acquisition
 - Industrial: Non-destructive testing, CAD and design tools, Process monitoring & control
 - **Commercial:** Image and sound compression, movie special effects, voice and data compression
- Common task for all these fields: Data Compression, Data acquisition, Spectral analysis, Echo reduction

Digital Signal Processing Signal, Mean ans Standard deviation

- A signal is a description of how one parameter is related to another, for example v(t) (analog signal) is converted with a 12bit 1KS/s ADC
- The converted signal has 4096 (2¹² possible binary values), and time is defined only at one millisecond increments
- Let's define N as the total number of samples of a signal

 Mean and Standard deviation of the digitized signals can be calculated then

by Dennis Cazar Ramírez

- Mean describes what is being measured
- Standard deviation represents noise and other interference
- Signal-to-Noise Ratio SNR

$$SNR = rac{Mean}{Standard Deviation}$$

• Coefficient of Variation CV

$$CV = rac{Standard \ Deviation}{Mean} imes 100$$

• A "good" signal means a high value of SNR and a low value of CV

• Suppose we have 128 samples of a 8bit ADC, the **histogram** displays the *number of samples* that have a *possible value*

• The histogram can be used to efficiently calculate the mean and standard deviation of very large data sets

Digital Signal Processing Histogram

 The sum of all of the values in the histogram must be equal to the number of points in the signal:

$$N = \sum_{i=0}^{M-1} H_i$$

• The histogram groups samples together that have the same value

$$\mu = \frac{1}{N} \sum_{i=0}^{M-1} H_i$$

• This allows the statistics to be calculated by working with a few groups, rather than a large number of individual samples

$$\sigma^{2} = \frac{1}{N-1} \sum_{i=0}^{M-1} (i-\mu)^{2} H_{i}$$

- A problem occurs in calculating the histogram when the number of levels each sample can take on is much larger than the number of samples in the signal
- This is always true for signals represented in floating point notation, where each sample is stored as a fractional value
- For example, integer representation might require the sample value to be 3 or 4, while floating point allows millions of possible fractional values between 3 and 4.
- For example, imagine a 10000 sample signal, with each sample having one billion possible values. The conventional histogram would consist of one billion data points, with all but about 10000 of them having a value of zero.

- **Binning** is a technique consisting in arbitrarily selecting the length of the histogram to be some convenient number, called **bin**
- The value of each bin represent the total number of samples in the signal that have a value within a certain range.
- For example, imagine a floating point signal that contains values from 0.0 to 10.0, and a histogram with 1000 bins.
- Bin 0 in the histogram is the number of samples in the signal with a value between 0 and 0.01, bin 1 is the number of samples with a value between 0.01 and 0.02, and so forth,
- How many bins should be used? This is a compromise between two problems: resolution along x and y axis.

Digital Signal Processing Binning: example

 Original signal with 300 samples, each sample a floating point between 1 and 3

• Histograms with 601 bins (poor vertical resolution) and 9 bins (poor horizontal resolution)

- Most DSP techniques are based on a divide-and-conquer strategy called superposition.
- The signal being processed is broken into simple components, each component is processed individually, and the results reunited.
- This approach has the tremendous power of breaking a single complicated problem into many easy ones.
- Superposition can only be used with linear systems, a term meaning that certain mathematical rules apply.
- Fortunately, most of the applications encountered in science and engineering fall into this category.

- A signal is a description of how one parameter varies with another parameter. For instance, voltage changing over time in an electronic circuit, or brightness varying with distance in an image.
- A system is any process that produces an output signal in response to an input signal.
- **Continuous systems** input x(t) and output y(t) continuous signals, such as in analog electronics.
- **Discrete systems** input x[n] and output y[n] discrete signals, such as computer programs that manipulate the values stored in arrays.
- You may want to design a system to remove noise in an electrocardiogram, sharpen an out-of-focus image.
- The system may represent some physical process that you want to study or analyze. Radar and sonar are good examples of this.

< □ > < /□ >

• A system is called linear if it has two mathematical properties: homogeneity

If
$$x[n] \rightarrow y[n]$$
 then $kx[n] \rightarrow ky[n]$

and additivity

If $x_1[n] \rightarrow y_1[n]$ and $x_2[n] \rightarrow y_2[n]$ then $x_1[n] + x_2[n] \rightarrow y_1[n] + y_2[n]$

- If you can show that a system has both properties, then you have proven that the system is linear.
- A third property, **shift invariance**, is not a strict requirement for linearity, but it is a mandatory property for most DSP techniques.

If
$$x[n] \rightarrow y[n]$$
 then $x[n+s] \rightarrow y[n+s]$

• Linear Systems examples

Non-linear system examples

Image: A matrix

э

• Linear Systems applications

- Wave propagation: mechanic and electromagnetic waves
- Electrical circuits: resistors, capacitors, inductors
- Electronic circuits: amplifiers and filters
- Mechanical motion: interaction of masses, springs, dampeners
- Systems described by differential equations RLC networks
- Nonlinear Systems applications
 - Non static Linear Systems: voltage and power in a circuit, radiant energy emission, intensity of light transmitted
 - Non sinusoidal fidelity systems peak detection, waveform conversion, frequency doubling
 - Hysteresis and Saturation magnetic flux, mechanical stress
 - Systems with threshold digital logic gates, seismic vibrations

• **Superposition principle** states that any complex signal can be represented as a linear combination of other simpler signals

$$xn = x_1[n] + x_2[n] + \dots + x_m[n] + c$$

- **Decomposition** is the process where a single signal is broken into two or more additive components
- The process of combining signals through scaling and addition is called **synthesis**

- The Scientist and Engineer's Guide to Digital Signal Processing By Steven W. Smith, Ph.D.
- Learn DSP
- A Beginner's guide to DSP

э