Imágenes médicas: Física, Procesamiento y Registro I

Miguel Martín Landrove Centro de Visualización Médica, INABIO, UCV Centro de Física Molecular y Médica, Facultad de Ciencias, UCV Centro de Diagnóstico Docente Las Mercedes

Latin American alliance for Capacity buildING in Advanced physics LA-CONGA physics

Rayos X y Tomografías

- Rayos X
 - Generación. Interacción. Características generales de equipos de imágenes en base a rayos X convencionales.
 - Equipos de rayos X específicos. Fluoroscopía y mamografía
- Tomografía Computarizada
 - Generación de la imagen tomográfica. Sistemas de tomografía computarizada
 - Dosis y calidad de imagen en equipos de tomografía computarizada
- Tomografía de emisión
 - Conceptos de medicina nuclear. Generación de la imagen. Gamma cámara.
 - Equipos de tomografía de emisión. SPECT (Single Photon Emission Computed Tomography). PET (Positron Emission Tomography)

Generación de rayos X

Interacción con la materia

Dispersión de Rayleigh

$$\frac{d\sigma_{coh}}{d\theta} = \frac{2\pi r_0^2}{2} \left(1 + \cos^2(\theta)\right) [F(q, Z)]^2 sen(\theta)$$

$$q = \frac{2h\nu}{c} sen\left(\frac{\theta}{2}\right)$$

$$F(q, Z) \rightarrow Z \qquad \theta \rightarrow 0$$

$$F(q, Z) \rightarrow 0 \qquad \theta \rightarrow \pi$$

$$E$$

$$F(q, Z) \rightarrow 0 \qquad \theta \rightarrow \pi$$

$$F(q, Z) \rightarrow 0 \qquad \theta \rightarrow \pi$$

$$F(q, Z) \rightarrow 0 \qquad \theta \rightarrow \pi$$

Dispersión de Compton

Dispersión de Compton

Efecto Fotoeléctrico

Atenuación de los rayos X

COEFICIENTE DE ATENUACIÓN LINEAL MÁSICO. LEY DE LAMBERT-BEER

Atenuación

Generador de rayos X

Eficiencia del generador de rayos X

$$P_{r} = 0.9 \times 10^{-9} ZV^{2}I$$

$$P_{d} = VI$$

$$Eficiencia = \frac{P_{r}}{P_{d}} = 0.9 \times 10^{-9} ZV$$
Ventana de salida

Pantalla intensificadora. Resolución

Detector de imagen. Película

Detector de imagen. Película

Detector de imagen. Sistemas digitales

"Thin-Film Transistor", TFT

Control de la dispersión. Rejillas

Tomografía computarizada o tomografía de transmisión

$$p_{\gamma}(\xi) = \int_{L} f(\vec{r}) d\eta$$

$$\xi = x\cos\gamma + y\sin\gamma = r\cos(\delta - \gamma)$$

$$F_{1}(k,\gamma) \equiv \int_{-\infty}^{+\infty} p_{\gamma}(\xi) e^{-2\pi ik \xi} d\xi$$

$$p_{\gamma}(\xi) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} dy f(\vec{r}) \,\delta\left(\xi - \hat{\xi} \cdot \vec{r}\right)$$

Senograma

$$F_{1}(k,\gamma) = \int_{-\infty}^{+\infty} d\xi \ e^{-2\pi \ ik \ \xi} \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} dy \ \delta\left(\xi - \hat{\xi} \cdot \vec{r}\right) f\left(\vec{r}\right)$$
$$= \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} dy \ f\left(\vec{r}\right) \ e^{-2\pi \ ik \ \hat{\xi} \cdot \vec{r}} = F_{2}\left(k\hat{\xi}\right)$$

$$f\left(\vec{r}\right) = \int_{-\infty}^{+\infty} dk_x \int_{-\infty}^{+\infty} dk_y F_2\left(\vec{k}\right) e^{2\pi i \vec{k} \cdot \vec{r}}$$
$$= \int_{-\infty}^{+\infty} \left|k\right| dk \int_0^{\pi} d\gamma F_1\left(k,\gamma\right) e^{2\pi i k \hat{\xi} \cdot \vec{r}}$$

Teorema de la sección central

Reconstrucción de la imagen tomográfica

$$\begin{split} f\left(\vec{r}\right) &= \int_{-\infty}^{+\infty} dk_x \int_{-\infty}^{+\infty} dk_y F_2\left(\vec{k}\right) e^{2\pi i \vec{k} \cdot \vec{r}} \\ &= \int_{-\infty}^{+\infty} \left|k\right| dk \int_0^{\pi} d\gamma \ F_1\left(k,\gamma\right) \ e^{2\pi i k \hat{\xi} \cdot \vec{r}} \\ &= \int_0^{\pi} d\gamma \ Q_{\gamma}\left(\hat{\xi} \cdot \vec{r}\right) \\ Q_{\gamma}\left(\hat{\xi} \cdot \vec{r}\right) &= \mathfrak{I}^{-1}\left(\left|k\right| F_1\left(k,\gamma\right)\right) \\ &= \mathfrak{I}^{-1}\left\{\mathfrak{I}\left(\mathfrak{I}^{-1}\left(\left|k\right|\right) * \mathfrak{I}^{-1}\left(F_1\left(k,\gamma\right)\right)\right)\right\} \\ &= \mathfrak{I}^{-1}\left(\left|k\right|\right) * \mathfrak{I}^{-1}\left(F_1\left(k,\gamma\right)\right) \\ &= \mathfrak{I}^{-1}\left(\left|k\right|\right) * p_{\gamma}\left(\xi\right) \\ &= \left(h * p_{\gamma}\right)(\xi) \end{split}$$

Reconstrucción de la imagen tomográfica

BP

FBP

Características del equipo

Equipos Helicoidales Multicorte

Paso de la hélice o pitch

Dosis en tomografía

$$CTDI_{100} = \frac{1}{T} \int_{-50mm}^{50mm} D(z) dz$$

Para incluir las características de absorción de un paciente se utiliza un maniquí cilíndrico de polimetilmetacrilato (PMMA) de 16 o 32 cm de diámetro y un tamaño axial de al menos 14 cm. Se tienen orificios para la colocación de cámaras de ionización en el centro y 1 cm por debajo de la superficie a las 3, 6, 9 y 12 en el reloj.

Maniquí para determinar CTDI

CTDIvol y DLP

Bajo la suposición de que la dosis en el maniquí de CTDI disminuye en la dirección radial desde la superficie hacia el centro, se define el promedio ponderado de CDTI como:

$$CTDI_{W} = \frac{1}{3}CTDI_{100,C} + \frac{2}{3}CTDI_{100,P}$$

donde $CTDI_{100,P}$ es el promedio sobre las 4 medidas periféricas y $CTDI_{100,C}$ es la medida en la dirección central. En el caso de tomografía helicoidal tenemos: $CTDI_{VOL} = \frac{CTDI_{W}}{Paso}$

$$DLP = CTDI_{VOL}L \quad (mGy \, cm)$$

Dependencia de la dosis con el paso

Medicina Nuclear y tomografía de emisión

Estabilidad Nuclear

Estabilidad Nuclear

- La cantidad de material radiactivo, expresado como el número de átomos radiactivos en los que ocurre una transformación nuclear por unidad de tiempo, se denomina actividad (*A*).
- Tradicionalmente expresada en la unidad del curie (*Ci*), donde $1 Ci = 3.70 \times 10^{10}$ desintegraciones por segundo (*dps*).
- La unidad SI es el becquerel (Bq), que equivale a una desintegración por segundo. 1 Bq = 1 dps.
- 1 Ci = 37 GBq

- El número de átomos que decaen por unidad de tiempo es proporcional al número de átomos inestables.
- La constante de proporcionalidad es la constante de decaimiento (λ).

$$\frac{dN}{dt} = -\lambda N$$

$$A = -\frac{dN}{dt} = \lambda N$$

 Parámetro relacionado a la constante de decaimiento; definido como el tiempo necesario para que el número de átomos radiactivos en la muestra disminuya a la mitad

$$\lambda = \frac{\ln(2)}{T_{1/2}} = \frac{0.693}{T_{1/2}}$$

• La media vida física y al constante de decaimiento están inversamente relacionadas y son únicas para cada radionúclido

Media Vida Física

Tc99m	140.5 keV	6.03 horas
I-131	364, 637 keV	8.06 días
I-123	159 keV	13.0 horas
I-125	~35 keV	60.2 días
In-111	172, 247 keV	2.81 días
Th-201	~70, 167 keV	3.044 días
Ga-67	93, 185, 300 keV	3.25 días

Esquema de decaimiento

Ciclotrón como generador de radioisótopos

Equipo de imágenes. Cámara plana

Fotomultiplicador

Senograma

Senograma

Componentes y geometría de un equipo PET

A. Corrección de atenuación
B. Colimadores o "septos" para reducir la dispersión
C. Bloques de detectores consistentes de cristales centelleadores
D. Tubos fotomultiplicadores
E. Blindaje

Componentes y geometría de un equipo PET

Correcciones a las coincidencias

Eventos Aleatorios Eventos por Dispersión

Correcciones a las coincidencias

Resonancia Magnética

Historia

Felix Bloch y Edward Purcell reciben el Premio Nobel de Física en 1952 por el descubrimiento de la resonancia magnética nuclear. 1946

1973 - 1977

En el año 2003 se otorga el Premio Nobel en Medicina a Paul C. Lauterbur de la Universidad de Illinois y a Sir Peter Mansfield de la Universidad de Nottingham por sus descubrimientos en relación con la generación de imágenes mediante resonancia magnética.

Escala de la resonancia magnética nuclear

Factor Giromagnético

Dirección del Campo Magnético

Teorema de Wigner-Eckart

Núcleos que exhiben momento magnético

Ħ				x	I :	= 1	/2	x	I	= 1 y	/2						<u>He</u>	$^{1}H \rightarrow 99.9844$	<mark>⁄⁄</mark>
Li	Be			x	I	> 1	/2		I	> 1	/2	B	<u>c</u>	N	<u>o</u>	E	Ne	I = 1/2	
Na	Mg											<u>AI</u>	Si	<u>P</u>	<u>s</u>	<u>CI</u>	Ar	$^{13}C \rightarrow 1.108\%$	
ĸ	<u>Ca</u>	Sc	<u>Ti</u>	¥	Cr	Mn	Fe	Co	<u>Ni</u>	Cu	Zn	Ga	Ge	As	<u>Se</u>	Br	<u>Kr</u>	I = 1/2	
Rb	<u>Sr</u>	Y	<u>Zr</u>	Nb	Mo	Tc	<u>Ru</u>	<u>Rh</u>	<u>Pd</u>	Ag	Cd	<u>In</u>	Sn	<u>Sb</u>	Te	Ţ	<u>Xe</u>	$14_{\rm N} \rightarrow 00.0270$	
Cs	Ba	La	Hf	<u>Ta</u>	W	Re	<u>Os</u>	lr	<u>Pt</u>	Au	Hg	<u>TI</u>	Pb	Bi	Po	At	Rn	$N \rightarrow 99.635 \%$	0
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt										I = 1	
													$\ ^{17}O \rightarrow 3.7 \times 10^{-2}$	0/					
			Ce	Pr	Nd	Pm	<u>Sm</u>	<u>Eu</u>	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		I = 5/2	
			<u>Th</u>	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr			

Equilibrio Termodinámico

Equilibrio Termodinámico

Equilibrio Termodinámico

Precesión de la magnetización nuclear

Relajación

$g(\tau) = \langle h_L(t)h_L(t+\tau) \rangle$

 $g(\tau) = \langle h_L^2 \rangle exp(-\tau/\tau_c)$

Relajación

 $g(\tau) = \langle h_L(t)h_L(t+\tau) \rangle$

 $g(\tau) = \langle h_L^2 \rangle exp(-\tau/\tau_c)$

$$J(\omega) = \frac{1}{2} \int_{-\infty}^{\infty} g(\tau) exp(-i\omega\tau) d\tau$$

Resonancia Magnética

Decaimiento libre de la inducción

Eco de Espín. Spin Echo (Hahn Echo)

Eco de Espín. Spin Echo (Hahn Echo)

Relajación Longitudinal

Imágenes por Resonancia Magnética

Gradientes de campo magnético

$$H_0' = H_0 + \delta H_0 + z \cdot \widetilde{G} \cdot r$$

$$H'_{0} \approx H_{0} + \delta H_{0} + z \cdot \widetilde{G} \cdot \overline{r} + \frac{1}{2} \left(\frac{x \cdot \widetilde{G} \cdot r}{H_{0}} \right) x \cdot \widetilde{G} \cdot r + \frac{1}{2} \left(\frac{y \cdot \widetilde{G} \cdot r}{H_{0}} \right) y \cdot \widetilde{G} \cdot r$$

$$\widetilde{G} \to z \cdot \widetilde{G} \equiv G$$

$$H_0' = H_0 + \delta H_0 + G \cdot r$$

Excitación selectiva. Perfil del corte

Selección del espesor de corte

Selección del espesor de corte

LA-CoNGA physics

Espacio k

LA-CoNGA physics

Espacio k

LA-CoNGA physics

Optimización del muestreo en espacio k

Adquisición rápida

Composición del equipo

Esquema del equipo

Transmisión

Recepción

Esquema del equipo

Antenas. Birdcage coil

Gradientes

Difusión Molecular

Efecto del movimiento molecular

Lo que se traduce en una atenuación del eco de espín.

Difusión libre y limitada

Secuencia de Stejskal-Tanner. Difusión

El efecto de la secuencia puede mostrarse mediante el presente ejemplo.

LA-CoNGA physics

LA-CoNGA physics

Δ

Secuencia codificadora de difusión

Tensor de difusión

Tensor de difusión

Anisotropía fraccional

$$FA = \sqrt{\frac{(\lambda_1 - \lambda_2)^2 + (\lambda_2 - \lambda_3)^2 + (\lambda_1 - \lambda_3)^2}{2(\lambda_1^2 + \lambda_2^2 + \lambda_3^2)}}$$

Curtosis

Información funcional

Información Funcional

Información Funcional

Información Funcional

Espectroscopía in vivo

Espectroscopía in vivo. Localización

NAA Lat. 1.6 1169 1.3 150 100 ast 1.85 110 187 230 123 in. 212 0.6 7.0 240 161. 100 2.75 760 28 1.75 234 127 125 \$30 23* 115 121 131 120 157 156 5.40 1.6 107 NAA Cho / NAA 0.01 1.01 0.02 0.03 0.90 В 0.82 POr C #-phosphate 1.05 0.31 1.20 1.04 0.80 0.025 u-phosphate P¢r PE 2.09 1:21 9.25 180. 1.07 081 0.84 101 0.47 0.78 100 p-phosphate 0.84 0.76 0.50 0.52 1.02 y-phosphate 0.82 0.02 0.07 1.05 1.17 0.08 hillion a-phosphale 0.86 0.65 **776** 0.50 and Card powership while some in the 0.31 0.28 0.67 4 -10

Perfusión

Perfusión

Perfusión

Contraste Dinámico. DCE-MRI

Contraste Dinámico. DCE-MRI

Imágenes funcionales cerebrales. fMRI

- Los cambios metabólicos producen cambios en el nivel de sO₂ en sangre lo que hace aumentar el flujo sanguíneo hacia la zona excitada
- No toda la sangre arterial se convierte en venosa aumentando el nivel de susceptibilidad magnética de la misma.
- Las modificaciones de los gradientes de campo magnético conducen a modificaciones de los tiempos de relajación T₂ y T₂*.
- Las modificaciones en T₂ y T₂* conducen a cambios en la intensidad de la imagen.

Efecto BOLD (Blood Oxigenation Level Dependence)

۰M

http://laconga.redclara.net

contacto@laconga.redclara.net

Latin American alliance for Capacity buildi**NG** in Advanced **physics**

LA-CoNGA physics

Cofinanciado por el programa Erasmus+ de la Unión Europea

El apoyo de la Comisión Europea para la producción de esta publicación no constituye una aprobación del contenido, el cual refleja únicamente las opiniones de los autores, y la Comisión no se hace responsable del uso que pueda hacerse de la información contenida en la misma.