Introduction to Measurements Systems LA-CoNGA physics - 2023

by Dennis Cazar Ramírez

February 6, 2023

Contents

- Actual Operational Amplifiers
- Finite Amplitude Gain
- Input Offset
- Bias current

Basic Definitions

```
Ideal and Real op-amps
```


Real op-amps differ from ideal in some important parameters

- Open Loop Gain: Very high, 100000 (100dB) for uA741 but not infinite. High bandwidth op-amps have much smaller open loop gain.
- Offset Voltage: An imbalance in input stage causes a $D C$ voltage at the output when input is zero.
- Bias Current: Inputs do drain current (against the second golden rule).
- Offset Current: An offset of the two input currents will show up as a voltage offset at the output.

Operational Amplifiers

Ideal Op-amps

- Z_{G} and Z_{F} forms the β network transfer function
- The op-amp has Open Loop gain equal to A

Noise gain

- It is important to differentiate between noise gain and signal gain in an amplifier.
- Non inverting gain is

$$
\begin{equation*}
G=\frac{Z_{F}+Z_{G}}{Z_{G}} \tag{1}
\end{equation*}
$$

- while Inverting gain is

$$
\begin{equation*}
G=\frac{1}{\beta} \tag{2}
\end{equation*}
$$

- The feedback attenuation, β, is the same for both the inverting and non-inverting stages:

$$
\begin{equation*}
\beta=\frac{Z_{G}}{Z_{G}+Z_{F}} \tag{3}
\end{equation*}
$$

Noise gain is the inverse of the net feedback attenuation from the amplifier output to the feedback input. In other words, the inverse of the β

Noise gain

- Including the β effects of finite op amp gain, a modified gain expression for the non-inverting stage is:

$$
\begin{equation*}
G_{C L}=\frac{1}{\beta}\left[1+\frac{1}{1+\frac{1}{A_{V O L} \beta}}\right] \tag{4}
\end{equation*}
$$

- Where $G_{C L}$ is the finite-gain stage's closed-loop gain and $A_{V O L}$ is the op amp open-loop voltage gain for loaded conditions.
- For $A_{\text {VOL }} \beta \gg 1$

$$
\begin{equation*}
1+\frac{1}{1+\frac{1}{A_{V O L} \beta}} \approx \frac{1}{A_{V O L} \beta} \tag{5}
\end{equation*}
$$

Gain Stability

- Closed-loop gain instability is produced primarily by variations in open-loop gain due to changes in supply voltage, temperature, loading, etc.

$$
\begin{equation*}
\frac{\Delta G_{C L}}{G_{C L}} \approx \frac{\Delta A_{V O L}}{\Delta A_{V O L}} \frac{1}{A_{V O L} \beta} \tag{6}
\end{equation*}
$$

- Any variation in open-loop gain $\Delta A_{V O L}$ is reduced by the factor $A_{\text {VOL }} \beta$, it is an effect on closed-loop gain.

This improvement in closed-loop gain stability is one of the important benefits of negative feedback.

Loop gain

- The product $A_{V O L} \beta$ is called loop gain
- for high values of $A_{V O L} \beta$ eq. (4) becomes:

$$
\begin{equation*}
\frac{A_{V O L}}{G_{C L}} \approx A_{V O L} \beta \tag{7}
\end{equation*}
$$

- Consequently, in a given feedback circuit the loop gain, $A_{V O L} \beta$, is approximately the numeric ratio (or difference, in $d B$) of the amplifier open-loop gain to the circuit closed-loop gain.

Loop gain is a very significant factor in predicting the performance of closed-loop operational amplifier circuits.

Frequency Dependence of Loop Gain

- Open-loop gain is dependent of frequency!!

- In these Bode plots, subtraction on a logarithmic scale is equivalent to normal division of numeric data.

Gain-Bandwidth Product

If we multiply the open-loop gain by the frequency, the product is always a constant

- For example, if we have an design which requires a closed-loop gain of 10 and a bandwidth of 100 kHz , we need an op amp with a minimum gain-bandwidth product of 1 MHz

Input Offset Voltage

- Ideally, if both inputs of an op amp are at exactly the same voltage, then the output should be at zero volts.
- In practice, a small differential voltage will need to be applied to the inputs to force the output to zero.

Input offset voltage is modeled as a voltage source, $V_{O S}$, in series with the inverting input terminal of the op amp

Offset Voltage Adjustment

- Many single op-amps have pins available for optional offset null pins.
- A simple configuration using a potentiometer (uA741)

Be careful: the voltage gain of an op amp at its offset adjustment pins may actually be greater than the gain at its signal inputs!

Op Amp Input Bias Current

- Ideally, no current flows into the input terminals of an op amp.
- In practice, there are always two input bias currents, I_{B+} and I_{B-}

- I_{B} is a very variable parameter!
- I_{B} can vary from $60 f A$ (1 electron every $3 \mu s$) to many μA, depending on the device.
- Some structures have well-matched I_{B}, others do not.

Input Offset Current

- The input offset current is defined as:

$$
\begin{equation*}
I_{O S}=I_{B+}-I_{B-} \tag{8}
\end{equation*}
$$

- A bias compensation resistor can cancel the effects of bias current

Input Bias current

- Input Bias Current (IB) refers to the DC currents flowing into or out of the amplifier's input pins to create a defined operating point during normal operation.

- For both inverting and non-inverting amplifier circuits, the bias current compensating resistor is placed in series with the non-inverting (+) input to compensate for bias current voltage drops in the divider network:

