LA-CoNGA physics Introduction to Measurements Systems Digital vs Analog

by Dennis Cazar Ramírez

April 3, 2024

1/21

by Dennis Cazar Ramírez ASCANSA physics Introduction to Measure April 3, 2024

Contents

- Digital vs Analog quantities an overview
- Digital to Analog Conversion DAC
- DAC Characteristics
- Analog to Digital Conversion ADC
- ADC Characteristics

by Dennis Cazar Ramírez

Digital vs Analog

- A digital quantity can assume only a discrete numbers of symbols called "digits", i.e. binary, decimal, hexadecimal.
- In the binary system, a digit is represented as a voltage that may actually have a value that is anywhere within specified ranges
- For example, for the Arduino logic:

$$0V$$
 to $0.5V = "0"$
 $2V$ to $3.5V = "1"$

- By contrast, an analog quantity can take on any value over a continuous range of values, its exact value is significant.
- differences between analog and digital

Digital vs Analog

- Most physical variables are analog in nature and can take on any value within a continuous range of values. Examples include:
 - temperature, pressure
 - light intensity, audio signals
 - position, rotational speed, and flow rate.

 Analog-to-digital converter (ADC) and digital-to-analog converter (DAC) are used to interface a computer to the analog world so that the computer can monitor and control a physical variable

by Dennis Cazar Ramírez SA-CoMGA plustos Introduction to Measure April 3, 2024 4/21

ADCs and DACs

 Analog-to-digital converter (ADC). The ADC converts an analog input to a digital output. This digital output consists of a number of bits that represent the value of the analog input

 Digital-to-analog converter (DAC). This digital output from the computer is connected to a digital-to-analog converter (DAC), which converts it to a proportional analog voltage or current

by Dennis Cazar Ramírez

Digital to Analog Conversion 4-bit DAC

 D/A conversion is the process of taking a value represented in digital code (such as straight binary or BCD) and converting it to a voltage or current that is proportional to the digital value

• Notice that there is an input for a **voltage reference**, V_{ref} . This input is used to determine the **full-scale output** or maximum value that the D/A converter can produce

by Dennis Cazar Ramírez BA CANSA physics introduction to Missing April 3, 2024 6 / 21

Digital to Analog Conversion 4-bit DAC

The analog output is proportional to the digital input

Analog
$$Output = K \times Digital Input$$

- where K is the proportionality factor and is a constant value for a given DAC connected to a fixed reference voltage
- In this example:

$$V_{out} = (1V) \times Digital$$
 In

- A five-bit DAC has a current output. For a digital input of 10100, an output current of 10 mA is produced. What will I_{out} be for a digital input of 11101?
- What is the largest value of output voltage from an 8-bit DAC that produces 1.0 V for a digital input of 00110010?

by Dennis Cazar Ramírez

A-CoNGA physics Introduction to Messure

April 3, 2024

7 / 21

Digital to Analog Conversion

Characteristics

- Analog Output The output of a DAC is technically not an analog quantity because it can take on only specific values
- However, the number of different possible output values can be increased and the difference between successive values decreased by increasing the number of input bits

D	С	В	Α		V _{OUT} (V)
0	0	0	1	\rightarrow	1
0	0	1	0	\rightarrow	2
0	1	0	0	\rightarrow	4
1	0	0	0	\rightarrow	8

• **Input Weights** note that each digital input contributes a different amount to the analog output. This is easily seen if we examine the cases where only one input is *HIGH*

by Dennis Cazar Ramírez

April 3, 2024

8 / 21

Digital to Analog Conversion

Resolution

Resolution of a DAC is defined as the smallest change that can occur
in the analog output as a result of a change in the digital input. It is
always equal to the weight of the LSB and is also referred to as the
step size

• Note that the staircase has 16 levels corresponding to the 16 input states, but there are only 15 steps or jumps between the 0-V level and full-scale. For an *N-bit DAC* the number of different levels will be 2^N , and the number of steps will be $2^N - 1$

Digital to Analog Conversion

Resolution

 You may have already figured out that resolution (step size) is the same as the proportionality factor K in the DAC input/output relationship:

$$resolution = K = \frac{A_{fs}}{2^N - 1}$$

- where A_{fs} is the analog full-scale output and N is the number of bits.
- Percentage Resolution It is also useful to express it as a percentage of the full-scale output

% resolution =
$$\frac{K}{A_{fs}} \times 100$$

• A 10-bit DAC has a step size of 10 mV. Determine the full-scale output voltage and the percentage resolution.

by Dennis Cazar Ramírez 2/45CN/GA physics Introduction to Measure April 3, 2024 10 / 21

DAC circuitry

Basic circuit

 A 4-bit DAC circuitry. The inputs are assumed to have values of either 0 or 5 V. An op-amp is employed as a summing amplifier

• Recall that the summing amplifier multiplies each input voltage by the ratio of the feedback resistor R_F to the corresponding input resistor R_{IN}

$$V_{OUT} = -(V_D + \frac{1}{2}V_C + \frac{1}{4}V_B + \frac{1}{8}V_A)$$

by Dennis Cazar Ramírez A-CoNGA physics Introduction to Measure April 3, 2024 11/21

Analog to Digital Conversion ADC

- An analog-to-digital converter takes an analog input voltage and, after a certain amount of time, produces a digital output code that represents the analog input.
- The A-D conversion process is generally more complex and time consuming than the D-A process

• An ADC circuit is more complex compared to a DAC

by Dennis Cazar Ramírez A ColliGA physics introduction to Massare April 3, 2024 12 / 21

Analog to Digital Conversion

Basic Circuit

- Several important types of ADCs utilize a DAC as part of their circuitry.
- Figure below is a general block diagram for this class of ADC

 The op-amp comparator has two analog inputs and a digital output that switches states, depending on which analog input is greater

by Dennis Cazar Ramírez DA CONCA physics. Introduction to Measure April 3, 2024 13 / 21

Analog to Digital Conversion Digital-Ramp ADC

 One of the simplest versions of the general ADC uses a binary counter as the register and allows the clock to increment the counter one step at a time until

$$V_{AX} \geq V_A$$

- It is called a **digital-ramp ADC** because the waveform at V_{AX} is a step-by-step ramp (actually a staircase)
- A digital-ramp ADC contains:
 - a counter
 - a DAC
 - an analog comparator
 - a control AND gate

by Dennis Cazar Ramírez

Analog to Digital Conversion Digital-Ramp ADC

 A START pulse is applied to reset the counter to 0. The HIGH at START also inhibits clock pulses from passing through the AND gate into the counter.

• When conversion process is complete, a \overline{EOC} is generated and and the contents of the counter are the digital representation of V_A .

by Dennis Cazar Ramírez UA CoWGA physics Introduction to Messure April 3, 2024 15 / 21

• Conversion time t_c : is the time interval between the end of the START pulse and the activation of the output \overline{EOC}

$$t_c(max) = (2^N - 1) clock cycles$$

An average conversion time is useful

$$t_c(avg) = \frac{t_c(max)}{2} \approx 2^{N-1} clock \ cycles$$

- Resolution: Resolution of the ADC is the same as the internal DAC
- Quantization Error It is a rounding error between the analog input voltage to the ADC and the output digitized value

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

Nyquist-Shannon Theorem

- The terms Nyquist, aliasing, undersampling, and oversampling are basic ADC terms.
- The Nyquist-Shannon sampling theorem states that for a true representation of waveform X, greater than two samples per period are required, i.e.

Undersampling and aliasing

• With $F_{in} > f_{Nyquist}$, the ADC capture output has translated the analog input signal at a lower frequency. This frequency translation is called **aliasing**.

Oversampling

• With $F_{in} << f_{Nyquist}$, the ADC capture output has translated the analog input signal at the exact frequency.

• Examples above refers to a monotone signal, in general the analog input signal bandwidth must be less than the ADC's Nyquist frequency.

by Dennis Cazar Ramírez

Oversampling

 The ADC used in your system must ensure that the ADC input specifications are capable of meeting your requirements

www.ti.com

SLAS515E-NOVEMBER 2006-REVISED JULY 2009

12-Bit, 500-/550-MSPS Analog-to-Digital Converters

FEATURES

- 12-Bit Resolution
- · On-Chip Analog Buffer
- ADS5463: 500 MSPS
- ADS5463 SFDR: 77dBc at 300 MHz f_{IN}
- ADS54RF63: 550 MSPS
- ADS54RF63 SFDR: 70dBc at 900 MHz f_{IN}
- 2.3-GHz Input Bandwidth
- LVDS-Compatible Outputs
- Very Low Latency: 3.5 Clock Cycles
- High Analog Input Swing without Damage,
 10 V_{nn} Differential-AC Signal
- . Total Power Dissipation: 2.2 W
- 80-Pin TQFP PowerPAD™ Package (14-mm × 14-mm footprint)

- Industrial Temperature Range: -40°C to 85°C
- Pin-Similar/Compatible to 12-, 13-, and 14-Bit Family: ADS5440/ADS5444/ADS5474

APPLICATIONS

- . Test and Measurement Instrumentation
- Software-Defined Radio
- Data Acquisition
- . Power Amplifier Linearization
- · Communication Instrumentation
 - Radar

References

- Digital systems and applications, Tocci, 10th Ed Chap 11
- Arduino Basics DAC
- High-Speed, Analog-to-Digital Converter Basics

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ト ・ 恵 ・ 夕久で