
6. The Lorenz (1963) Equations

The Lorenz equations were originally derived

by Saltzman (1962) as a ‘minimalist’ model

of thermal convection in a box

ẋ = σ(y − x) (1)

ẏ = rx − y − xz (2)

ż = xy − bz (3)

where σ (“Prandtl number”), r (“Rayleigh

number”) and b are parameters (> 0). These

equations also arise in studies of convection

and instability in planetary atmospheres, mod-

els of lasers and dynamos etc. Willem Malkus

also devised a water-wheel demonstration...
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8.1 Simple properties of the Lorenz Equations

• Nonlinearity - the two nonlinearities are

xy and xz

• Symmetry - Equations are invariant un-

der (x, y) → (−x,−y). Hence if (x(t), y(t), z(t))

is a solution, so is (−x(t),−y(t), z(t))

• Volume contraction - The Lorenz system

is dissipative i.e. volumes in phase-space

contract under the flow

• Fixed points - (x∗, y∗, z∗) = (0,0,0) is a

fixed point for all values of the param-

eters. For r > 1 there is also a pair of

fixed points C± at x∗ = y∗ = ±
√

b(r − 1),

z∗ = r−1. These coalesce with the origin

as r → 1+ in a pitchfork bifurcation
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Linear stability of the origin

Linearization of the original equations about

the origin yields

ẋ = σ(y − x)

ẏ = rx − y

ż = −bz

Hence, the z-motion decouples, leaving
(

ẋ
ẏ

)

=

(

−σ σ
r −1

)(

x
y

)

with trace τ = −σ − 1 < 0 and determinant

∆ = σ(1 − r).

For r > 1, origin is a saddle point since ∆ < 0

(see Lecture 4)

For r < 1, origin is a sink since τ2 − 4∆ =

(σ + 1)2 − 4σ(1 − r) = (σ − 1)2 + 4στ > 0 →

a stable node.

Actually for r < 1 it can be shown that every

trajectory approaches the origin as t → ∞ the

origin is globally stable, hence there can be

no limit cycles or chaos for r < 1.
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6.2 Chaos on a Strange Attractor

Lorenz considered the case σ = 10, b = 8/3, r =

28 with (x0, y0, z0) = (0,1,0).

NB rH = σ(σ + b + 3)/(σ − b − 1) ' 24.74,

hence r > rH. The resulting solution y(t)

looks like...

Fig. 6.2.1

After an initial transient, the solution settles

into an irregular oscillation that persists as

t → ∞ but never repeats exactly. The motion

is aperiodic.
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Lorenz discovered that a wonderful structure

emerges if the solution is visualized as a tra-

jectory in phase space. For instance, when

x(t) is plotted against z(t), the famous but-

terfly wing pattern appears

Fig. 6.2.2

• The trajectory appears to cross itself re-

peatedly, but that’s just an artifact of

projecting the 3-dimensional trajectory onto

a 2-dimensional plane. In 3-D no cross-

ings occur!
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• The number of circuits made on either

side varies unpredictably from one cycle

to the next. The sequence of the number

of circuits in each lobe has many of the

characteristics of a random sequence!

• When the trajectory is viewed in all 3

dimensions, it appears to settle onto a

thin set that looks like a pair of butterfly

wings. We call this attractor a strange

attractor and it can be shown schemati-

cally as...

Fig. 6.2.3
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What is the geometric structure of the strange

attractor?

The uniqueness theorem means that trajec-

tories cannot cross or merge, hence the two

surfaces of the strange attractor can only ap-

pear to merge.

Lorenz concluded that “there is an infinite

complex of surfaces” where they appear to

merge. Today this “infinite complex of sur-

faces” would be called a FRACTAL.

A fractal is a set of points with zero volume

but infinite surface area.

Fractals will be discussed later after a closer

look at chaos...
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Exponential divergence of nearby trajectories

The motion on the attractor exhibits sensi-

tive dependence on initial conditions. Two

trajectories starting very close together will

rapidly diverge from each other, and there-

after have totally different futures. The prac-

tical implication is that long-term prediction

becomes impossible in a system like this, where

small uncertainties are amplified enormously

fast.

Suppose we let transients decay so that the

trajectory is “on” the attractor. Suppose

x(t) is a point on the attractor at time t,

and consider a nearby point, say x(t) + δ(t),

where δ is a tiny separation vector of initial

length ||δ0|| = 10−15, say

Fig. 6.2.4
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Sensitivity to initial conditions on Lorenz attractor
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In numerical studies of the Lorenz attractor,

one finds that ||δ(t)|| ∼ ||δ0||e
λt, where λ '

0.9.

Hence neighbouring trajectories separate ex-

ponentially fast!

Equivalently, if we plot ln ||δ(t)|| versus t, we

find a curve that is close to a straight line

with a positive slope λ.

Fig. 6.2.5
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Note...

• The curve is never straight, but has wig-

gles since the strength of exponential di-

vergence varies somewhat along the at-

tractor.

• The exponential divergence must stop when

the separation is comparable to the “di-

ameter” of the attractor - the trajecto-

ries cannot get any further apart! (curve

saturates for large t)

• The number λ is often called the Lya-

punov exponent, though this is somewhat

sloppy terminology....
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This is because...

(i) There are actually n different Lyapunov

exponents for an n-dimensional system, de-

fined as follows...

Consider the evolution of an infinitesimal sphere

(in phase space) of perturbed initial condi-

tions. During its evolution the sphere be-

comes distorted into an infinitesimal ellipsoid.

Let δk(t), k = 1,2,3...n denote the length of

the kth principal axis of the ellipsoid. Then

δk(t) ∼ δk(0)e
λkt,

where the λk are the Lyapunov exponents.

For large t, the diameter of the ellipsoid is

controlled by the most positive λk. Thus our

λ above is actually the largest Lyapunov ex-

ponent.

(ii) λ depends (slightly) on which trajectory

we study. We should really average over

many different points on the same trajectory

to get the true value of λ.
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When a system has a positive Lyapunov ex-

ponent, there is a time horizon beyond which

prediction will break down....

Fig. 6.2.6

Suppose we measure the initial conditions of

an experimental system very accurately. Of

course no measurement is perfect - there is

always some error ||δ0|| between our estimate

and the true initial state. After a time t the

discrepancy grows to ||δ(t)|| ∼ ||δ0||e
λt.

15



Let a be a measure of our tolerance, i.e. if

a prediction is within a of the true state, we

consider it acceptable. Then our prediction

becomes intolerable when ||δ(t)|| ≥ a, i.e. af-

ter a time

thorizon ∼ O

(

1

λ
ln

a

||δ||

)

The logarithmic dependence on ||δ0|| is what

hurts....!

Example Suppose a = 10−3, ||δ0|| = 10−7.

⇒ thorizon =
4 ln 10

λ

If we improve the initial error to ||δ0|| = 10−13,

⇒ thorizon =
10 ln10

λ

i.e. only 10/4 = 2.5 times longer!
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Defining Chaos

No definition of the term “chaos” is univer-

sally accepted - even now! - but almost ev-

eryone would agree on the three ingredients

used in the following working definition:

Chaos is aperiodic long-term behaviour in

a deterministic system that exhibits sensi-

tive dependence on initial conditions

1. Aperiodic long-term behaviour means that

there are trajectories which do not settle

down to fixed points, periodic or quasi-

periodic orbits as t → ∞.

2. Deterministic means that the system has

no random or noisy inputs or parameters.

Irregular behaviour arises solely from the

system’s nonlinearity.
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3. Sensitive dependence on initial conditions

means that nearby trajectories diverge ex-

ponentially fast, i.e. the system has at

least one positive Lyapunov exponent.

Some people think that chaos is just a fancy

word for instability. For example, the system

ẋ = x is deterministic and shows exponen-

tial separation of nearby trajectories. How-

ever, we should not consider this system to

be chaotic!

Trajectories are repelled to infinity, and never

return. Hence infinity is a fixed point of the

system, and ingredient 1. above specifically

excludes fixed points!
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Defining “attractor” and “strange attractor”

The term attractor is also difficult to define

in a rigorous way. Loosely, an attractor is a

set of points to which all neighbouring tra-

jectories converge. Stable fixed points and

stable limit cycles are examples.

More precisely, we define an attractor to be

a closed set A with the following properties:

1. A is an invariant set: any trajectory x(t)

that starts in A stays in A for all time.

2. A attracts an open set of initial condi-

tions: there is an open set U containing

A such that if x(0) ∈ U , then the dis-

tance from x(t) to A tends to zero as

t → ∞. Hence A attracts all trajectories

that start sufficiently close to it. The

largest such U is called the basin of at-

traction of A.
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3. A is minimal: there is no proper subset

of A that satisfies conditions 1. and 2.

Example

{

ẋ = µx − x3

ẏ = −y

Let I denote the interval −1 ≤ x ≤ 1, y = 0.

Is I an attractor?

Fig. 6.2.7

So, I is an invariant set (condition 1.). Also,

I attracts an open set of initial conditions

- it attracts all trajectories in the xy-plane.

But I is not an attractor because it is not

minimal. The stable fixed points (±1,0) are

proper subsets of I that also satisfy condi-

tions 1. and 2. These points are the only

attractors for the system.
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Maybe the same is true for the Lorenz Equa-

tions? - Nobody has yet proved that the

Lorenz attractor is truly an attractor!!

Finally we define a strange attractor to be an

attractor that exhibits sensitive dependence

on initial conditions.

Strange attractors were originally called strange

because they are often (but not always...)

fractal sets. Nowadays, this geometric prop-

erty is regarded as less important than the

dynamical property of sensitive dependence

on initial conditions. The terms “chaotic

attractor” and “fractal attractor” are used

when one wishes to emphasize one or other

of these aspects.
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The Lorenz Map

Consider the following view of the Lorenz

strange attractor...

Fig. 6.3.1

Lorenz wrote that “the trajectory apparently

leaves one spiral only after exceeding some

critical distance from the centre... It there-

fore seems that some single feature of a given

circuit should predict the same feature of the

following circuit.”
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The “single feature” he focused on was zn,

the nth local maximum of z(t).

Fig. 6.3.2

Lorenz’s idea is that zn should predict zn+1.

He checked this by numerical integration. The

plot of zn+1 vs zn looks like....

Fig. 6.3.3
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The data from the chaotic time series ap-

pears to fall neatly on a curve - there is no

“thickness” to the graph. Hence Lorenz was

able to extract order from chaos!

The function zn+1 = f(zn) is now called the

Lorenz Map. Note...

• The graph is not actually a curve - it does

have some thickness so, strictly speaking,

f(z) is not a well-defined function.

• The Lorenz Map reminds us of the Poincaré

map, but there is a distinction - the Poincaré

map tells us how the two coordinates of

a point on a surface change after first

return to the surface, while the Lorenz

map characterises the trajectory by only

one number. This approach only works

if the attractor is very “flat” (close to

2-D).
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