

Primordial black holes and cosmic gravitational waves **La-CoNGA** physics

Guillem Domenech — 08/10/24 & 10/10/24

Emmy Noether-Programm

DFG Deutsche Forschungsgemeinschaft

Latin American alliance for Capacity buildiNG in Advanced physics

LA-CoNGA **physics**

About me

- 2023-2029 JUNIOR, Leibniz U., Hannover
- 2022-2023 VISITOR, Garching, Max Planck Inst.
- 2020-2023 POSTDOC, INFN, Padua
- 2017-2020 **POSTDOC, U. Heidelberg, ITP**
- 2014-2017
 - PHD, Kyoto U., Yukawa Inst., Kyoto
- 2012-2013 MASTER, Barcelona U.

Cosmology and Gravity

Early universe

Black holes

Gravitational Waves

Theories of gravity

Inflation

Studying in Germany

- Master's or PhD in Germany with the DAAD and the StipendiumPlus scholarships.
- Very good PhD programs in the Max Planck Society in Germany.
- Master's and PhD in Japan with the Monbukagakusho scholarships.
- In physics, master level and above are mainly in English.

Suggested additional lectures

- Introduction to cosmology, Barbara Ryden (Book + YouTube Lectures)
- Fundamentals of cosmology, James Rich (Springer book)
- Cosmology, Daniel Bauman (Book + YouTube Lectures)
- Oxford master course in cosmology, Subir Sarkar, (Online recoded lectures)
- Lectures on PBHs: <u>https://arxiv.org/pdf/2110.02821</u> and https://arxiv.org/pdf/2112.05716

Lectures on GWs associated with PBHs: <u>https://arxiv.org/abs/2307.06964</u>

Astrophysical constants

Quantity	Symbol, equation	n. Value Referenc	e,footnote
Newtonian constant of gravitation	G_N	$6.67430(15) imes10^{-11}{ m m}^3{ m kg}^{-1}{ m s}^{-2}$	[1]
Planck mass	$M_P = \sqrt{\hbar c/6}$	$\overline{G_N}$ 1.220 890(14) × 10 ¹⁹ GeV/ $c^2 = 2.176434(24) \times 10^{-8}$ kg	[1]
Planck length	$l_P=\sqrt{\hbar G_N}/$	$\overline{c^3}$ 1.616 255(18) $ imes 10^{-35} { m m}$	[1]
tropical year (equinox to equinox, 2020)	yr	$31556925.1~{ m s}~= 365.242189~{ m days}$	[4]
sidereal year (period of Earth around Sun relative to stars)		$31558149.8~{ m s}pprox\pi imes10^7~{ m s}$	[4]
mean sidereal day (Earth rotation period relative to stars)		$23^{ m h}56^{ m m}04 lap{ m s} m 09053$	[4]
astronomical unit	au	$149597870700\mathrm{m}$	exact [5]
parsec $(1 \text{ au}/1 \text{ arc sec})$	\mathbf{pc}	$3.08567758149 imes10^{16}~{ m m}=3.26156\ldots { m ly}$	exact [6]
light year (deprecated unit)	ly	$0.306601\ldots\mathrm{pc}=0.946073\ldots imes10^{16}\mathrm{m}$	[7]
present-day CMB temperature	T_0	2.7255(6) K	[27, 28]
present-day CMB dipole amplitude	d	3.3621(10) mK	[27, 29]
Solar velocity with respect to CMB	v_{\odot} :	$369.82(11) \text{ km s}^{-1} \text{ towards } (l, b) = (264.021(11)^{\circ}, 48.253(5)^{\circ})^{\circ}$	[29]
Local Group velocity with respect to CN	$4\mathrm{B}$ v_{LG}	620(15) km s ⁻¹ towards $(l, b) = (271.9(20)^{\circ}, 29.6(14)^{\circ})$	[29]
number density of CMB photons	n_γ	$410.7(3) (T/2.7255)^3 { m cm^{-3}}$	[30]
density of CMB photons	$ ho_\gamma$	$4.645(4) (T/2.7255)^4 \times 10^{-34} \mathrm{g cm^{-3}} \approx 0.260 \mathrm{eV cm^{-3}}$	[30]
entropy density/Boltzmann constant	s/k	$2891.2~(T/2.7255)^3~{ m cm}^{-3}$	[30]
present-day Hubble expansion rate	H_0	$100 \ h \ { m km s^{-1} Mpc^{-1}} = h imes (9.777752 \ { m Gyr})^{-1}$	[31]
scaling factor for Hubble expansion rate		0.674(5)	[2, 32]
Hubble length	c/H_0	$0.9250629 \times 10^{26} h^{-1} \mathrm{m} = 1.372(10) \times 10^{26} \mathrm{m}$	
scaling for cosmological constant	$c^2/3H_0^2$	$2.85247 imes 10^{51} h^{-2} \mathrm{m^2} = 6.21(9) imes 10^{51} \mathrm{m^2}$	
critical density of the Universe	$ ho_{ m crit}=3H_0^2/8\pi G_N$	$_{X}$ 1.878 34(4) × 10 ⁻²⁹ h^{2} g cm ⁻³	
	, i i i i i i i i i i i i i i i i i i i	$= 1.053672(24) imes 10^{-5} h^2 ({ m GeV}/c^2){ m cm}^{-3}$	
		$= 2.77536627 imes 10^{11} h^2 \; M_{\odot} { m Mpc}^{-3}$	
baryon-to-photon ratio (from BBN)	$\eta = n_{ m b}/n_{\gamma}$	$5.8 \times 10^{-10} \le \eta \le 6.5 \times 10^{-10} $ (95% CL)	[33]
number density of baryons	$n_{ m b}$	$2.515(17) imes 10^{-7} { m cm}^{-3}$	[2, 3, 34, 35]
		$(2.4 imes 10^{-7} < n_{ m b} < 2.7 imes 10^{-7}) { m cm^{-3}} \; (95\% \; { m CL}, \eta imes n_{\gamma})$	
CMB radiation density of the Universe	$\Omega_\gamma = ho_\gamma / ho_{ m crit}$	$2.473 \times 10^{-5} (T/2.7255)^4 h^{-2} = 5.38(15) \times 10^{-5}$	[30]
Planck 2018 6-parameter fit to flat ΛG	DM cosmology		
baryon density of the Universe	$\Omega_{ m b}= ho_{ m b}/ ho_{ m crit}$	${}^{\ddagger}0.02237(15)h^{-2}={}^{\dag}0.0493(6)$	[2, 3, 27]
cold dark matter density of the Universe	$\Omega_{ m c}= ho_c/ ho_{ m crit}$	${}^{\ddagger}_{+} 0.1200(12) h^{-2} = {}^{\dagger}_{-} 0.265(7)$	[2, 3, 27]
$100 imes$ approx to $r_*/D_{ m A}$	$100 imes heta_{ m MC}$	$^{\ddagger}1.04092(31)$	[2, 3, 27]
reionization optical depth	τ	$\frac{1}{2}0.054(7)$	[2, 3, 27]
$\ln(\text{power prim. curv. pert.}) \ (k_0 = 0.05 \text{Mpc})$	$(10^{10}\Delta_\mathcal{R}^2)$	$\frac{1}{3}.044(14)$	$\left[2,3,27 ight]$
scalar spectral index	$n_{ m s}$	$^{\ddagger} 0.965(4)$	[2, 3, 27]

Outline of the lectures

- Lecture 1: \bullet
 - Recap of early universe cosmology
 - Primordial black holes
- Lecture 2:
 - Gravitational waves in Cosmology
 - GW background associated with PBHs