Clase 7 Gabriela Navarro

Módulo de Teoría Filial Física de Partículas

18 de abril 2023

Latin American alliance for Capacity buildiNG in Advanced physics LA-CONGA physics

Construyendo el Modelo Estándar: QCD

Interacción Fuerte

4. Descripción de la Cromodinámica cuántica QCD

Calendario y Bibliografía

Clase 1: dispersión elástica electrón - protón

Clase 2: dispersión inelástica profunda, estructura del protón

Clase 3: QCD

Clase 4: QCD perturbativa, colisiones hadrónicas

Bibliografía

1.) Modern Particle Physics, M. Thomson, Cambridge University Press, 2013.

2.) Quarks and Leptons, an introductory course in Modern Particle Physics, F. Halzen y A. Martin, John Wiley & sons, 1984

3.) Foundations of Quantum Chromodynamics, an Introduction to Perturbative method in gauge theories, T. Muta, World Scientific, 1998.

4.) Introduction to elementary particles, D. Griffiths, John Wiley & sons, 2008.

 La dispersión electrón-protón es una gran herramienta para estudiar la estructura del protón.

- A altas energías el proceso dominante es la dispersión inelástica profunda, donde el protón se rompe -> permite estudiar la distribución de momento de los quarks constituyentes del protón.
- La naturaleza del proceso $e^-p \to e^-p$ depende de la longitud de onda del fotón virtual en comparación con el radio del protón.

- A muy baja energía:
 - Electrón no relativista, $\lambda_{\gamma} >> r_p$
 - · $e^-p \rightarrow e^-p$: dispersión elástica del electrón en el potencial estático del protón.

- A energías un poco más altas:
 - $\lambda_{\gamma} \sim r_p$
 - ▶ $e^-p \rightarrow e^-p$: dispersión no puramente electrostática y el cálculo de la sección eficaz requiere tener en cuenta la distribución de carga Y de momento magnético del protón

 $\lambda \gg r_{\rm p}$

- Cuando la $\lambda_{\gamma} < r_p$
 - · La sección eficaz elástica se hace pequeña
 - $e^-p \rightarrow e^-p$: dispersión inelástica donde el fotón virtual interactúa con un quark constituyente del protón y éste se "rompe".

- $\lambda_{\gamma} < < r_p$
- λ_{γ} es suficientemente pequeña como para determinar la estructura dinámica del protón en forma detallada.
- El protón parece ser un mar de quarks y gluons interactuando fuertemente.

- Las dispersiones de Rutherford y Mott son los límites de menor energía de la dispersión elástica electrón - protón.
- La energía del electrón es tan baja que la energía cinética del protón es despreciable (comparada con su masa en reposo).
- El protón se considera como una fuente fija con potencial electrostático 1/r.
- La sección eficaz la calcularemos tratando al protón como una partícula puntual de Dirac (aproximación razonable ya que $\lambda_{\gamma} > > r_p$)

Elemento de matriz correspondiente al diagrama de Feynman:

 $c(\theta/2)$

 $s(\theta/2)e^{i\phi}$

E + m

$$u_{\uparrow} = \sqrt{E + m_e} \begin{pmatrix} c(\theta/2) \\ s(\theta/2)e^{i\phi} \\ \frac{p}{E + m_e}c(\theta/2) \\ \frac{p}{E + m_e}s(\theta/2)e^{i\phi} \end{pmatrix} \qquad u_{\downarrow} = \sqrt{E + m_e} \begin{pmatrix} -s(\theta/2) \\ c(\theta/2)e^{i\phi} \\ \frac{p}{E + m_e}s(\theta/2) \\ -\frac{p}{E + m_e}c(\theta/2)e^{i\phi} \end{pmatrix}$$

Despreciamos el retroceso del protón

Consideramos el ángulo azimutal del electrón cero $\phi=0$

Los estados posibles iniciales y finales de los espinares del electrón son:

$$u_{\uparrow}(p_{1}) = \sqrt{E + m_{e}} \begin{pmatrix} 1\\0\\\frac{p}{E + m_{e}}\\0 \end{pmatrix} \qquad u_{\downarrow}(p_{1}) = \sqrt{E + m_{e}} \begin{pmatrix} 0\\1\\0\\-\frac{p}{E + m_{e}} \end{pmatrix} \qquad u_{\uparrow}(p_{3}) = \sqrt{E + m_{e}} \begin{pmatrix} c(\theta/2)\\s(\theta/2)\\\frac{p}{E + m_{e}}c(\theta/2)\\\frac{p}{E + m_{e}}s(\theta/2) \end{pmatrix} \qquad u_{\downarrow}(p_{3}) = \sqrt{E + m_{e}} \begin{pmatrix} -s(\theta/2)\\c(\theta/2)\\\frac{p}{E + m_{e}}s(\theta/2)\\-\frac{p}{E + m_{e}}c(\theta/2) \end{pmatrix}$$

$$\alpha \qquad \text{Limite no relativista : } \alpha \to 0 \text{ (p < E)} \\\text{Limite ultra relativista : } \alpha \to 1 \text{ (E > m)}$$

Dispersión elástica electrón-protón

Dispersión de Rutherford

$$\mathcal{M}_{fi} = \frac{Q_q e^2}{q^2} [\bar{u}(p_3) \gamma^{\mu} u(p_1)] g_{\mu\nu} [\bar{u}(p_4) \gamma^{\nu} u(p_2)]$$

Calculemos todas las posibles corrientes de electrón

RR
$$\bar{u}_{\uparrow}(p_3)\gamma^{\mu}u_{\uparrow}(p_1) = (E + m_e)[(\alpha^2 + 1)c(\theta/2), 2\alpha s(\theta/2), -2i\alpha s(\theta/2), 2\alpha c(\theta/2)]$$

$$\mathsf{LL} \quad \bar{u}_{\downarrow}(p_3)\gamma^{\mu}u_{\downarrow}(p_1) = (E+m_e)[(\alpha^2+1)c(\theta/2), 2\alpha s(\theta/2), -2i\alpha s(\theta/2), 2\alpha c(\theta/2)]$$

RL
$$\bar{u}_{\uparrow}(p_3)\gamma^{\mu}u_{\downarrow}(p_1) = (E + m_e)[(1 - \alpha^2)s(\theta/2), 0, 0, 0]$$

LR
$$\bar{u}_{\uparrow}(p_3)\gamma^{\mu}u_{\downarrow}(p_1) = (E+m_e)[(\alpha^2-1)s(\theta/2),0,0,0]$$

e

р₃

 $\alpha \rightarrow 0$ $\phi = 0$ $\alpha \rightarrow 1$

e

p1

 $\alpha \rightarrow 0$

 $\alpha \rightarrow 1$

$$\mathcal{M}_{fi} = \frac{Q_q e^2}{q^2} [\bar{u}(p_3) \gamma^{\mu} u(p_1)] g_{\mu\nu} [\bar{u}(p_4) \gamma^{\nu} u(p_2)]$$

En el límite no relativista:

RR = LL
$$\bar{u}_{\uparrow}(p_3)\gamma^{\mu}u_{\uparrow}(p_1) = \bar{u}_{\downarrow}(p_3)\gamma^{\mu}u_{\downarrow}(p_1) = (2m_e)[c(\theta/2),0,0,0]$$

RL = LR
$$\bar{u}_{\uparrow}(p_3)\gamma^{\mu}u_{\downarrow}(p_1) = \bar{u}_{\downarrow}(p_3)\gamma^{\mu}u_{\uparrow}(p_1) = (2m_e)[s(\theta/2),0,0,0]$$

Los espinores del protón en estado inicial y final son (soluciones de la ecuación de Dirac para una partícula en reposo)

$$\bar{u}_{\uparrow}(p_4)\gamma^{\mu}u_{\uparrow}(p_2) = \bar{u}_{\downarrow}(p_4)\gamma^{\mu}u_{\downarrow}(p_2) = (2M_p)[1,0,0,0]$$
$$\bar{u}_{\uparrow}(p_4)\gamma^{\mu}u_{\downarrow}(p_2) = \bar{u}_{\downarrow}(p_4)\gamma^{\mu}u_{\uparrow}(p_2) = 0$$

$$\mathcal{M}_{fi} = \frac{Q_q e^2}{q^2} [\bar{u}(p_3) \gamma^{\mu} u(p_1)] g_{\mu\nu} [\bar{u}(p_4) \gamma^{\nu} u(p_2)]$$

 $\bar{u}_{\uparrow}(p_4)\gamma^{\mu}u_{\downarrow}(p_2) = \bar{u}_{\downarrow}(p_4)\gamma^{\mu}u_{\uparrow}(p_2) = 0$

 $\bar{u}_{\uparrow}(p_3)\gamma^{\mu}u_{\uparrow}(p_1) = \bar{u}_{\downarrow}(p_3)\gamma^{\mu}u_{\downarrow}(p_1) = (2m_e)[c(\theta/2),0,0,0]$ $\bar{u}_{\uparrow}(p_3)\gamma^{\mu}u_{\downarrow}(p_1) = \bar{u}_{\downarrow}(p_3)\gamma^{\mu}u_{\uparrow}(p_1) = (2m_e)[s(\theta/2),0,0,0]$

$$q^2 = (2) + (2) = (2) + (2)$$

$$\bar{u}_{\uparrow}(p_4)\gamma^{\mu}u_{\uparrow}(p_2) = \bar{u}_{\downarrow}(p_4)\gamma^{\mu}u_{\downarrow}(p_2) = (2M_p)[1,0,0,0]$$

e-

Podemos calcular el elemento de matriz promediado en espín sumando sobre los 8 estados permitidos de helicidad:

$$<|\mathcal{M}_{fi}^{2}| > = \frac{1}{4} \Sigma |\mathcal{M}_{fi}^{2}| = \frac{1}{4} \frac{e^{4}}{q^{4}} 4M_{p}^{2} 4m_{e}^{2} (4c^{2}(\theta/2) + 4s^{2}(\theta/2))$$

$$\stackrel{E_{1} = E_{3} = E}{= E_{1} = E_{3} = P}$$

$$q^{4} = \frac{M_{p}^{2}m_{e}^{2}e^{4}}{|\vec{p}|^{4}\sin^{4}(\theta/2)}$$

$$P_{1} = P_{3} = P$$

$$q^{2} = (p_{1} - p_{3})^{2} = (0,\vec{p}_{1} - \vec{p}_{3})^{2} = -4|\vec{p}|\sin^{2}(\theta/2)$$

La sección eficaz diferencial en el sistema de referencia del laboratorio:

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \left(\frac{1}{m_p + E_1 - E_1 \cos\theta}\right)^2 < |\mathcal{M}_{fi}^2| > \qquad E_1 \sim m_e < < m_p$$

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 m_p^2} < |\mathcal{M}_{fi}^2| > = \frac{m_e^2 e^4}{64\pi^2 p^4 \sin^4(\theta/2)} \qquad \qquad E_K = p^2/2m_e^4$$
$$e^2 = 4\pi\alpha$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} = \frac{\alpha^2}{16E_K^2\sin^4(\theta/2)}$$

- En el límite no relativista, sólo la interacción entre las cargas eléctricas del electrón y protón contribuyen al proceso de dispersión.
- No hay contribución significativa de la interacción magnética espín-espín

Dispersión elástica electrón-protón

Dispersión de Mott

$$\mathcal{M}_{fi} = \frac{Q_q e^2}{q^2} [\bar{u}(p_3) \gamma^{\mu} u(p_1)] g_{\mu\nu} [\bar{u}(p_4) \gamma^{\nu} u(p_2)]$$

Es el límite cuando el electrón es relativista pero el retroceso del protón puede ser despreciado

Teníamos las corrientes del electrón:

RR
$$\bar{u}_{\uparrow}(p_3)\gamma^{\mu}u_{\uparrow}(p_1) = (E+m_e)[(\alpha^2+1)c(\theta/2), 2\alpha s(\theta/2), -2i\alpha s(\theta/2), 2\alpha c(\theta/2)]$$

$$\mathsf{LL} \qquad \bar{u}_{\downarrow}(p_3)\gamma^{\mu}u_{\downarrow}(p_1) = (E+m_e)[(\alpha^2+1)c(\theta/2), 2\alpha s(\theta/2), -2i\alpha s(\theta/2), 2\alpha c(\theta/2)]$$

RL
$$\bar{u}_{\uparrow}(p_3)\gamma^{\mu}u_{\downarrow}(p_1) = (E+m_e)[(1-\alpha^2)s(\theta/2),0,0,0] = 0$$

LR
$$\bar{u}_{\uparrow}(p_3)\gamma^{\mu}u_{\downarrow}(p_1) = (E+m_e)[(\alpha^2-1)s(\theta/2),0,0,0] = 0$$

En este caso: $m_e < < E < < m_p$ $\alpha \sim 1$ Dos de las posibles corrientes del electrón son cero -> la helicidad del electrón se conserva

 $\bar{u}_{\uparrow}(p_3)\gamma^{\mu}u_{\uparrow}(p_1) = 2E[c(\theta/2), s(\theta/2), -is(\theta/2), c(\theta/2)]$

Dispersión de Mott

La sección eficaz diferencial en el sistema de referencia del laboratorio:

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \left(\frac{1}{m_p + E_1 - E_1 \cos\theta}\right)^2 < |\mathcal{M}_{fi}^2| >$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{Mott} = \frac{\alpha^2}{4E^2 \sin^4(\theta/2)} \cos^2(\theta/2)$$

- Podríamos haber obtenido esta expresión de la dispersión de electrones en un potencial estático desde un punto fijo en el espacio V(r)
- No hay contribución significativa de la interacción magnética espín-espín

Hasta aquí no hemos tenido en cuenta la distribución de carga del protón.

- Las dispersiones de Rutherford y Mott pueden ser calculadas utilizando la teoría de perturbaciones a primer orden para la dispersión de un objeto puntual en un potencial de Coloumb.
- Para tener en cuenta la extensión finita de la distribución de carga del protón vamos a introducir un factor de forma.
- Cualitativamente, el factor de forma tiene en cuenta las diferentes contribuciones a la función de onda dispersada provenientes de diferentes puntos de la distribución de carga.

- Consideremos la dispersión de un electrón en el potencial estático de una distribución de carga extendida.
- El potencial a distancia \vec{r} del origen es:

$$V(\vec{r}) = \int \frac{Q\rho(\vec{r}')}{4\pi |\vec{r} - \vec{r}'|} d^{3}\vec{r}'$$

- Densidad de carga en términos de la carga total Q y la distribución de carga normalizada a la unidad.
- · Las funciones de onda del estado inicial y del electrón dispersado son

$$\psi_i = e^{i(\vec{p}_1 \cdot \vec{r} - Et)} \quad \mathbf{y} \ \psi_f = e^{i(\vec{p}_3 \cdot \vec{r} - Et)}$$

• El elemento de matriz a orden más bajo para la dispersión es:

$$\mathscr{M}_{fi} = \langle \psi_f | V(\vec{r}) | \psi_i \rangle = \int e^{-i\vec{p}_3 \cdot \vec{r}} V(\vec{r}) e^{i\vec{p}_1 \cdot \vec{r}} d^3 \vec{r}$$

- Usando que $\vec{q} = (\vec{p}_1 - \vec{p}_3)$ y la expresión para el potencial:

$$\mathcal{M}_{fi} = \iint e^{i\vec{q}\cdot\vec{r}} \frac{Q\rho(\vec{r}')}{4\pi \,|\,\vec{r}-\vec{r}'\,|} d^3r' d^3\vec{r} = \iint e^{i\vec{q}\cdot(\vec{r}-\vec{r}')} e^{i\vec{q}\cdot\vec{r}'} \frac{Q\rho(\vec{r}')}{4\pi \,|\,\vec{r}-\vec{r}'\,|} d^3r' d^3\vec{r}$$

$$\vec{R}$$

$$\mathcal{M}_{fi} = \int e^{i\vec{q}\cdot\vec{R}} \frac{Q}{4\pi |\vec{R}|} d^3\vec{R} \int \rho(\vec{r}') e^{i\vec{q}\cdot\vec{r}'} d^3r'$$

Dispersión debido a un potencial de partícula puntual Factor de forma

$$\mathcal{M}_{fi} = (M_{fi})_{puntual} F(\vec{q}^2)$$

$$F(\vec{q}^2) = \int \rho(\vec{r}) e^{i \vec{q} \cdot \vec{r}} d^3 \vec{r}$$

El tamaño finito del centro de dispersión introduce una diferencia de fase entre las ondas planas "dispersión de diferentes puntos en el espacio".

Dispersión elástica electrón-protón

Factores de forma

 $\left(\frac{d\sigma}{d\Omega}\right)_{Mott} = \frac{\alpha^2}{4E^2\sin^4(\theta/2)}\cos^2(\theta/2)$

La sección eficaz de Mott queda:

$$\left(\frac{\sigma}{\Omega}\right)_{Mott} \rightarrow \frac{\alpha^2}{4E^2\sin^4\theta/2} \cos^2\frac{\theta}{2} |F(\vec{q}^2)|^2$$

El factor de forma es la transformada de Fourier tridimensional de la distribución de carga.

Si $\lambda_{foton} \gg$ tamaño de la distribución de Q -> F(O) =1 (objeto puntual)

- Dispersión electrón-protón relativista
- Consideremos el caso de dispersión a mayores energías donde el retroceso del protón no puede ser despreciado y la interacción magnética espín-espín es importante.
- Escribamos los momentos:
- Considerando: $m_e^2 \sim 0$

$$\langle |\mathcal{M}_{fi}|^2 \rangle = \frac{8e^4}{(p_1 - p_3)^4} \Big[(p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) - m_p^2(p_1 \cdot p_3) \Big]$$

- Un poco de cinemática ...
 - En la mayoría de experimentos de dispersión elástica e-protón, el estado final de protón no se observa -> expresaremos los términos en función de los observables experimentales -> energía y ángulo de dispersión del electrón.

$$p_{4} = p_{1} + p_{2} - p_{3}$$

$$p_{1} \cdot p_{1} = p_{3} \cdot p_{3} = m_{e} \to 0$$

$$p_{1} \cdot p_{2} = E_{1}m_{p}$$

$$p_{2} \cdot p_{3} = E_{3}m_{p}$$

$$p_{1} \cdot p_{3} = E_{1}E_{3}(1 - \cos\theta)$$

$$p_{1} \cdot p_{4} = E_{1}m_{p} - E_{1}E_{3}(1 - \cos\theta)$$

$$p_{3} \cdot p_{4} = E_{1}E_{3}(1 - \cos\theta) + E_{3}m_{p}$$

$$\langle |\mathcal{M}_{fi}|^2 \rangle = \frac{8e^4}{(p_1 - p_3)^4} 2m_p E_1 E_3 \left[(E_1 - E_3) \sin^2 \frac{\theta}{2} + m_p \cos^2 \frac{\theta}{2} \right]$$

$$q^{2} = (p_{1} - p_{3})^{2} = p_{1}^{2} + p_{3}^{2} - 2p_{1} \cdot p_{3} \approx -2E_{1}E_{3}(1 - \cos\theta)$$

Dispersión electrón-protón relativista

Podemos escribir a la energía perdida por el electrón en términos de Q²:

$$E_{1} - E_{3} = \frac{Q^{2}}{2m_{p}} \qquad \langle |\mathcal{M}_{fi}|^{2} \rangle = \frac{m_{p}^{2}e^{4}}{E_{1}E_{3}\sin^{4}(\theta/2)} \left[cos^{2}\frac{\theta}{2} + \frac{Q^{2}}{2m_{p}^{2}}\sin^{2}\frac{\theta}{2}\right]$$

Sección eficaz:
$$\frac{d\sigma}{d\Omega} = \frac{\alpha^{2}}{4E_{1}^{2}\sin^{4}(\theta/2)} \frac{E_{3}}{E_{1}} \left[cos^{2}\frac{\theta}{2} + \frac{Q^{2}}{2m_{p}^{2}}\sin^{2}\frac{\theta}{2}\right]$$

_ e^{_}

17

Aunque la sección eficaz depende de Q², E₃, y θ -> sólo hay una variable independiente: Q² y E₃ se pueden expresar en función del ángulo de dispersión.

$$\frac{E_1}{E_3} = \frac{m_p}{m_p + E_1(1 - \cos\theta)} \qquad q^2 = -\frac{2m_p E_1^2(1 - \cos\theta)}{m_p E_1(1 - \cos\theta)}$$

Tamaño finito del protón

En general el tamaño finito del protón se puede modelar introduciendo dos funciones de estructura

- ightarrow Una tiene en cuenta la distribución de carga del protón $G_E(q^2)$
- La otra relacionada a la distribución de momento magnético del protón $G_M(q^2)$

La sección eficaz diferencial para este caso es (fórmula de Rosenbluth)

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4E_1^2 \sin^4(\theta/2)} \frac{E_3}{E_1} \left(\frac{G_E^2 + \tau G_M^2}{(1+\tau)} \cos^2\frac{\theta}{2} + 2\tau G_M^2 \sin^2\frac{\theta}{2}\right) \qquad \tau = \frac{Q^2}{4m_p^2}$$

Los factores de forma $G_E(q^2)$ y $G_M(q^2)$ son funciones del cuadrado del cuadri-momento q² del fotón virtual (a diferencia de antes que dependian de \vec{q}^2) -> no pueden interpretarse como la transformada de Fourier de las distribuciones de carga y de momento magnético.

Tamaño finito del protón

Sin embargo:

$$q^{2} = (E_{1} - E_{3})^{2} - \vec{q}^{2} \qquad -\vec{q}^{2} = q^{2} \left[1 - \left(\frac{q}{2m_{p}}\right)^{2}\right]$$

Si
$$\frac{q^2}{4m_p^2} \ll 1 \text{ entonces } q^2 \approx -\vec{q}^2 \rightarrow G_E(q^2) \approx G(\vec{q}^2)$$

$$\Rightarrow \text{ En el límite } \frac{q^2}{4m_p^2} \ll 1 \text{ podemos interpretar las funciones de estructura in términos de la transformadas de Fourier}$$

$$G_E(q^2) \approx G_E(\vec{q}^2) = \int e^{i\vec{q}\cdot\vec{r}}\rho(\vec{r})d^3\vec{r}$$

 $G_M(q^2) \approx G_M(\vec{q}^2) = \int e^{i\vec{q}\cdot\vec{r}}\mu(\vec{r})d^3\vec{r}$

 $\overrightarrow{\mu} = \frac{e}{m_p} \overrightarrow{S}$

Tamaño finito del protón

$$G_E(q^2) \approx G_E(\vec{q}^2) = \int e^{i\vec{q}\cdot\vec{r}}\rho(\vec{r})d^3\vec{r} \qquad \qquad G_M(q^2) \approx G_M(\vec{q}^2) = \int e^{i\vec{q}\cdot\vec{r}}\mu(\vec{r})d^3\vec{r}$$

El momento magnético de una partícula de Dirac puntual está relacionada con su espín:

$$\overrightarrow{\mu} = \frac{e}{m}\overrightarrow{S}$$

El valor medido experimentalmente para el momento anómalo magnético del protón es:

$$\overrightarrow{\mu} = 2.79 \frac{e}{m_p} \overrightarrow{S}$$

Por lo tanto al normalizar:

$$G_E(0) = \int \rho(\vec{r}) d^3 \vec{r} = 1 \qquad \qquad G_M(0) = \int \mu(\vec{r}) d^3 \vec{r} = +2.79$$

¿Cómo medimos las funciones de estructura?

La sección eficaz diferencial del proceso elástico e-p -> e-p depende de ambas distribuciones. Podemos escribirla como:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_0 \left(\frac{G_E^2 + \tau G_M^2}{(1+\tau)}\cos^2\frac{\theta}{2} + 2\tau G_M^2\sin^2\frac{\theta}{2}\right) \qquad \left(\frac{d\sigma}{d\Omega}\right)_0 = \frac{\alpha^2}{4E_1^2\sin^4(\theta/2)}\frac{E_3}{E_1}$$

A Q² bajo -> $\tau \ll 1$, el factor de forma **eléctrico** es el que domina equivalente al factor de forma $|F(\vec{q}^2)|$

$$\frac{d\sigma}{d\Omega} / \left(\frac{d\sigma}{d\Omega}\right)_0 \approx G_E^2$$
, and G_E^2 es

A Q² alto $\rightarrow \tau \gg 1$, el término magnético de espín-espín domina y $\frac{d\sigma}{d\Omega} / \left(\frac{d\sigma}{d\Omega}\right)_0 \approx (1 + 2\tau \tan^2 \frac{\theta}{2})G_m^2$

LA-CoNGA physics

- ¿Cómo medimos las funciones de estructura?
- En general, podemos inferir la dependencia en Q² de las funciones de estructura de experimentos de dispersión elástica e-p variando la energía del haz de electrones.
- Para cada energía del haz, se mide la sección eficaz diferencial para cada ángulo correspondiente al valor de Q² particular.

¿Cómo medimos las funciones de estructura?

También podemos hacer un análisis similar con las mediciones de la sección eficaz correspondiente a diferentes valores de Q² que nos da una determinación experimental de los factores de forma del protón a medida que Q² varía

El hecho que los factores de forma decrezcan con Q^2 demuestra que el protón tiene tamaño finito.

La forma de $G_M(Q^2)$ es muy parecida a la de $G_E(Q^2)$, lo que muestra que las distribuciones de Carga y momento magnético dentro del protón son consistentes.

Los valores medidos extrapolados a $Q^2 = 0$ están De acuerdo con $G_M(0) = 2.79$ y $.G_E(0) = 1$

Hughes et al., Phys. Rev. 139 (1965)B458

Dispersión elástica a alto Q²

Sabemos que la sección eficaz se reduce a :

Próximamente

Dispersión inelástica profunda

Modelo de guarks-pa

Data set	LO	NLO	NNLO
BCDMS $\mu p F_2$ [125]	162 / 153	176 / 163	173 / 163
BCDMS $\mu d F_2$ [19]	140 / 142	143 / 151	143 / 151
NMC $\mu p F_2$ [20]	141 / 115	132 / 123	123 / 123
NMC $\mu d F_2$ [20]	164 / 115	115 / 123	108 / 123
NMC $\mu n/\mu p$ [21]	122 / 137	261 / 14	127 / 148
$E665 \mu p F_2$ [22]		60 / 53	53
$E665 \ \mu d \ F_2 \ [22]$	52 / 53	52 / 53	0 / 53
SLAC ep F ₂ [23, 24]	21 / 18	31 / 37	31 / 37
SLAC ed F ₂ [23, 24]	13 / 18	30 / 38	26 / 38
NMC/BCDMS/SLAC/HERA F _L [20, 125, 24, 63, 64, 65]	113 / 53	68 / 57	63 / 57
E866/NuSea pp DY [88]	229 / 184	221 / 184	227 / 184
E866/NuSea pd/pp DY [89]	29 / 15	11 / 15	11 / 15
NuTeV $\nu N F_2$ [29]	35 / 49	39 / 53	38 / 53
CHORUS $\nu N F_2$ [30]	25 / 37	26 / 42	28 / 42
NuTeV $\nu N x F_3$ [29]	49 / 42	37 / 42	31 / 42
CHORUS $\nu N xF_3$ [30]	35 / 28	22 / 28	19 / 28
CCFR $\nu N \rightarrow \mu \mu X$ [31]	65 / 86	71 / 86	76 / 86
NuTeV $\nu M \rightarrow \mu \mu X$ [31]	53 / 40	38 / 40	43 / 40
HERA e ⁺ p NC 820 GeV[61]	125 / 78	93 / 78	89 / 78
HERA e ⁺ p NC 920 GeV 61	479 /330	402 /330	373/ 330
HERA e ⁻ p NC 920 GeV [61]	158/145	129/145	125 /145
HERA e^+p CC [61]	41 / 34	34 / 34	32 / 34
HERA e P CC [6I]	29 / 34	23 / 34	21 / 34
HERA ep F ₂ ^{charm} [62]	105/52	72 / 52	82 / 52
H1 99–00 e ⁺ p incl. jets [126]	77 / 24	14 / 24	-
ZEUS incl. jets [127, 128]	140/60	45 / 60	_
$DO \Pi p\bar{p}$ incl. jets [119]	125 / 110	116 / 110	119 / 110
CDF II $p\bar{p}$ incl. jets [118]	78 / 76	63 / 76	59 / 76
CDF II W asym. [66]	55 / 13	32 / 13	30 / 13
DØ II $W \rightarrow \nu e$ asym. [67]	47 / 12	28 / 12	27 / 12
DØ II $W \rightarrow \nu \mu$ asym. [68]	16 / 10	19 / 10	21 / 10
DØ II Z rap. [90]	34 / 28	16 / 28	16 / 28
CDF II Z rap. [70]	95 / 28	36 / 28	40 / 28
ATLAS W^+, W^-, Z [10]	94/30	38/30	39/30
CMS W asymm $p_T > 35$ GeV [9]	10/11	7/11	9/11
CMS asymm $p_T > 25$ GeV, 30 GeV[77]	7/24	8/24	10/24
LHCb $Z \rightarrow e^+e^-$ [79]	76/9	13/9	20/9
LHCb W asymm $p_T > 20 \text{ GeV}[78]$	27/10	12/10	16/10
CMS $Z \rightarrow e^+e^-$ [84]	46/35	19/35	22/35
ATLAS high-mass Drell-Yan [83]	42/13	21/13	17/13
CMS double diff. Drell-Yan [86]	—	372/132	149/132
Tevatron, ATLAS, CMS $\sigma_{t\bar{t}}$ [91]–[97]	53/13	7/13	8/13
ATLAS jets (2.76 TeV+7 TeV)[108, 107]	162/116	106/116	
CMS jets (7 TeV) [106]	150/133	138/133	_
All data sets	3706 / 2763	3267 / 2996	2717 / 2663

NLO

NNLO

Table 5: The values of $\chi^2/N_{pts.}$ for the data sets included in the global fit. For the NuTeV $u N
ightarrow \mu \mu X$ data, the number of degrees of freedom is quoted instead of $N_{
m pts.}$ since smearing effects mean nearby points are highly correlated. The details of corrections to data, kinematic cuts

Backup slides

LA-CoNGA **physics**