Silicon Radiation Detectors for High Energy Physics:

A very short introduction

M. Bomben

LPNHE & U. de Paris – Paris, France

Acknowledgements and disclaimer

Thanks to: I. Abt, V. Bonvicini, G. Calderini, S. Holland, M. Krammer, M. Moll and P. Wells

You can find great lectures here:

<u>http://www.hephy.at/fileadmin/user_upload/Lehre/Unterlagen/Praktikum</u> /Halbleiterdetektoren.pdf

And here: <u>http://wwwusers.ts.infn.it/~bonvicin/Dottorandi08.pdf</u>

Disclaimer: the author has been working on Silicon Sensors for charged particles detectors at colliders for many years. Hence, he has a slight bias for charged particle detectors

References

- •H. Spieler, Semiconductor Detector Systems, Oxford Science Publications, 2005 See also: <u>http://www-physics.lbl.gov/~spieler/</u>
- •G. Lutz, Semiconductor Radiation Detectors: Device Physics, Springer (July 11, 2007)
 •S.Sze, Physics of Semiconductor Devices, J.Wiley, 1981
- H. F.-W. Sadrozinski, Applications of Silicon Detectors, IEEE Trans. Nucl. Sci. Vol. 48 n.4 pp.933 –940, 2001.
- F. Hartmann, Silicon tracking detectors in high-energy physics, Nucl. Instr. and Meth. A666 (2012) 25-46
- D. Renker and E. Lorenz, Advances in solid state photon detectors, 2009 JINST 4 P04004
- M. Garcia-Sciveres and N. Wermes, A review of advances in pixel detectors for experiments with high rate and radiation, 2018 Rep. Prog. Phys. 81 066101

• P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) – <u>online version</u>

- M. Bomben https://indico.in2p3.fr/event/10777/timetable/#20150219
- M. Bomben https://tel.archives-ouvertes.fr/tel-01824535

The basics

A solid-state ionization chamber Signal given by the drift of charges (electrons and holes) under the effect of the electric field The signal is then amplified and shaped

Motivations for semiconductor detectors

In High Energy Physics we want to reconstruct the particles produced in collisions and measure their characteristics, like: energy, momentum, charge, and their lifetime (if it applies) Lifetimes of tau leptons, charm

Lifetimes of tau leptons, charm and beauty hadrons:

from 0.2 to 1.5 ps

decay length $I = \gamma\beta ct$, so typically the decay vertex is at a distance of single millimeters from the interaction vertex

- \Rightarrow place detectors as close as possible
- \Rightarrow detector with submillimeter precision is needed

History – MESD by Pisa group (1980)

MESD featured 12 mm long **300 µm wide aluminium strips** on a high resistivity Silicon wafer.

The signal was proportional to the energy released by the impinging particle. It assured **good spatial resolution** with low noise at room temperature.

All the desirable features of silicon detectors were already exploited by the first high energy physics detectors

S. R. Amendolia et al., A Multi-Electrode Silicon Detector for High Energy Experiments, Nucl. Instr. Meth. 176 (1980)

Today: ATLAS detector @ CERN LHC

Role of trackers in HEP experiments

What is a semiconductor?

- In an isolated atom the electrons have only discrete energy levels. In solid state material the atomic levels merge to energy bands.
- In metals the conduction and the valence band overlap, •
- whereas in isolators and semiconductors these levels are separated by an energy gap (band gap).

empty

conduction band

 $E_{qap} \approx 1 \text{ eV}$

occupied

valence band

Semiconductor

at T = 0 K

at T > 0 K

In semiconductors this gap is large (compared to kT ~ $1/40 \, eV$)

empty

conduction band

 $E_{gap} > 5 \text{ eV}$

occupied

valence band

Isolator

fermi

energy

electron energy

Semiconductors

Germanium: Used in nuclear physics, due to small band gap (0.66 eV) needs cooling (usually done with liquid nitrogen at 77 K)

Silicon: Standard material for vertex and tracking detectors in high energy physics, can be operated at room temperature, synergies with micro electronics industry.

Diamond (CVD or single crystal): Large band gap (6 eV), requires no depletion zone, very radiation hard, drawback is a low signal and high cost

Compound semiconductors: GaAs (faster than Si, no good insulating layer), CdTe (large Z, hence efficient for photodection);

Bond model of semiconductors

Each atom has 4 closest neighbors, the 4 electrons in the outer shell are shared and form covalent bonds.

At low temperature all electrons are bound

At higher temperature thermal vibrations break some of the bonds → free e- (n) cause conductivity (electron conduction)

The remaining open bonds attract other $e \rightarrow The$ "holes" (p) change position (hole conduction)

Intrinsic carrier concentration $n_{i:} n = p = n_i \sim 1 \times 10^{10} \text{ cm}^{-3}$ (T=300K) (In contrast, in metals $\sim 10^{22}/\text{cm}^3$)

Transport of charge carriers

Transport of charge carriers in a semiconductor: diffusion and drift

Diffusion: proportional to the gradient of the carrier density Drift: proportional to the applied electric field

$$\vec{J}_n = \vec{J}_{n,drift} + \vec{J}_{n,diff} = q \left(\mu_n n \vec{E} + D_n \nabla n \right)$$
$$\vec{J}_p = \vec{J}_{p,drift} + \vec{J}_{p,diff} = q \left(\mu_p p \vec{E} - D_p \nabla p \right)$$

D: diffusion coefficient [cm²/s] μ: mobility [cm²/(Vs)] Einstein's equation

$$D_n = \frac{kT}{q} \mu_n$$
$$D_p = \frac{kT}{q} \mu_p$$

→ → Valid at low/moderate fields; for large fields (>~ 5x10³ V/cm) the carriers varift = μE velocities saturates (Si: v ~ 10⁷ cm/s) → 10-30 ns collection time

 μ depends on doping and temperature. For intrinsic silicon: $\mu_n \sim 1350 \text{ cm}^2/(\text{Vs})$, $\mu_p \sim 450 \text{ cm}^2/(\text{Vs})$

Estimate SNR in an intrinsic silicon detector

Let's make a simple calculation for silicon:

Mean ionization energy $I_0 = 3.62 \text{ eV}$, mean energy loss per flight path dE/dx = 3.87 MeV/cm, intrinsic charge carrier density at T = 300 K $n_i = 1.45 \cdot 10^{10} \text{ cm}^{-3}$.

Assuming a detector with a thickness of $d = 300 \,\mu\text{m}$ and an area of $A = 1 \,\text{cm}^2$.

→ Signal of a mip in such a detector: $\frac{dE/dx \cdot d}{I_0} = \frac{3.87 \cdot 10^6 \text{ eV/cm} \cdot 0.03 \text{ cm}}{3.62 \text{ eV}} \approx 3.2 \cdot 10^4 \text{ e}^{-}\text{h}^{+}\text{-pairs}$ $\Rightarrow \text{ Intrinsic charge carrier in the same volume } (T = 300 \text{ K}):$ $n_i dA = 1.45 \cdot 10^{10} \text{ cm}^{-3} \cdot 0.03 \text{ cm} \cdot 1 \text{ cm}^2 \approx 4.35 \cdot 10^8 \text{ e}^{-}\text{h}^{+}\text{-pairs}$

→ Number of thermal created e⁻h⁺-pairs are four orders of magnitude larger than signal!!!

Have to remove the charge carrier!

→ Depletion zone in reverse biased pn junctions

N-doping

Doping with an element 5 atom (e.g. P, As, Sb). The 5th valence electron is weakly bound.

The doping atom is called donor The released conduction electron leaves a positively charged ion

Electrons (holes) are called majority (minority) carriers.

P-doping

Doping with an element 3 atom (e.g. B, Al, Ga, In). One valence bond remains open

The doping atom is called acceptor The acceptor atom in the lattice is negatively charged

The p-n junction

At n-type and p-type interface: diffusion of surplus carries to the other material until thermal equilibrium is reached.

The remaining ions create a space charge and an electric field stopping further diffusion.

The stable space charge region is free of charge carries: the depletion zone.

The p-n junction – forward and reverse bias

Applying a forward bias voltage V, e- and holes are refilled to the depletion zone.

The depletion zone becomes narrower

That's not what we want!

Applying a reverse bias voltage V, e- and holes are pulled out of the depletion zone.

The depletion zone becomes larger.

p-n junction in reverse bias

That's the way we operate our semiconductor detectors!

HEP silicon detector production

HEP silicon detector production

Detectors produced on wafers

Diameters: from 10 cm (picture) to 20 cm (depending also on industry trust)

Thicknesses: 300 μm down to 100 μm or less (most recent I tested: 50 μm)

Simplest silicon sensors: the pad diode

Example of a typical p+-n junction in a silicon detector:

Effective doping concentration $N_a = 10^{15}$ cm⁻³ in p+ region and $N_d = 10^{12}$ cm⁻³ in n bulk.

Without external voltage:

$$W_p = 0.02 \ \mu m$$

 $W_n = 23 \ \mu m$

Applying a reverse bias voltage of 100 V:

$$W_p = 0.4 \ \mu m$$

 $W_n = 363 \ \mu m$

Width of depletion zone in n bulk:

$$W \approx \sqrt{2\varepsilon_0 \varepsilon_r \mu \rho |V|}$$
 with $\rho = \frac{1}{e \mu N_{eff}}$

p+n junction

- V ... External voltage
- ρ ... specific resistivity
- μ ... mobility of majority charge carriers
- N_{eff}... effective doping concentration

Depletion voltage: howto

• By definition, differential capacitance is the change in charge (Q) in a device that occurs when it also has a change in voltage (V):

$C=\Delta Q/\Delta V$

- One general practical way to implement this is to apply a small AC voltage signal (millivolt range) to the device under test, and then measure the resulting current. Integrate the current over time to derive Q and then calculate C from Q and V.
- C-V measurements in a semiconductor device are made using two simultaneous voltage sources: an applied AC voltage signal (dVac) and a DC voltage (Vdc) that is swept in time, as illustrated in the next slide.

Voltage ramp for CV analysis

Connections for CV analysis

CV analysis: observables

P-n junction – Current voltage characteristics

Typical current-voltage of a p-n junction diode: exponential current increase in forward bias, small saturation in reverse bias.

P-n junction – Current voltage characteristics

Typical current-voltage of a p-n junction (diode): exponential current increase in forward bias, small saturation in reverse bias.

IV in real life

Silicon as detector material: summary

Reverse biased p-n junction as radiation detector: the depletion region is virtually free of mobile carriers → in absence of radiation only the (small) diode reverse current flows in the junction

Energy deposition: creation of a e-h pair for E ~ 3.6 eV (gas: 15-30 eV)→Large signals!

 High electric field in the depleted bulk
 → elec.s and holes drift very fast across the depletion zone: t_{coll} ~ 10-30 ns

Low doping concentration (high resistivity) of the bulk \rightarrow V_{depl} at low bias voltages (safely below V_{BD})

N-side of the junction: heavily doped N+ implant on the n-side (ohmic side) of the detector to ensure a good ohmic contact.

Backup

How to "see" particles?

- The goal is to measure position in space, charge, speed, mass and energy of the particles produced in collisions
- In order to achieve this, HEP experiments are made of several layers, each one with a specific task in the reconstruction of the collision event

